全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reciprocity as an Ever-Present Dual Property of Everything

DOI: 10.4236/jmp.2020.111007, PP. 98-121

Keywords: Reciprocity, Reciprocal Lattice, Fourier Transform, Archimedes’ Constant, Matter-Wave Duality, Pilot Wave, Golden Mean, E-Infinity Theory, Information Relativity Theory, Gyromagnetic Factor, Fine-Structure Constant, Quantum Entanglement, Dark Matter and Cosmos, Superconductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reciprocity may be understood as relation of action and reaction in the sense of Hegel’s philosophical definition. Quoting Kant, freedom and ethical necessities are reciprocally limited. In this contribution, a more mathematical than philosophical reflection about reciprocity as an ever-present dual property of everything was given. As a crystallographer, the author is familiar with the action of Fourier transforms and the relation between a crystal lattice and its reciprocal lattice, already pointing to the duality between particles and waves. A generalization of the reciprocity term was stimulated by results of the famous Information Relativity (IR) theory of Suleiman with its proven physical manifestation of matter-wave duality, compared to the set-theoretical E-Infinity theory developed by El Naschie, where the zero set represents the pre-quantum particle, and the pre-quantum wave is assigned to the empty set boundary surrounding the pre-particle. Expectedly, the most irrational number \"\" of the golden mean is involved in these thoughts, because this number is intimately connected with its inverse. An important role plays further Hardy’s maximum quantum entanglement probability as the fifth power of φ and its connection to the dark matter. Remembering, the eleven dimensions in Witten’s M-theory may be decomposed into the Lucas number L5 = 11 = φ5φ5. Reciprocity is indeed omnipresent in our world as piloting waves that accompany all observable earthen and cosmic matter. As a side effect of the IR theory some fundamental constants such as the gyromagnetic factor of the electron, Sommerfeld’s fine-structure constant as well as the charge of the electron must be marginally changed caused by altered relativistic corrections. Consequences also arise for our vision about the evolution of life and consciousness.

References

[1]  Hardy, L. (1993) Physical Review Letters, 71, 1665-1668.
https://doi.org/10.1103/PhysRevLett.71.1665
[2]  Mermin, N.D. (1994) American Journal of Physics, 62, 880-887.
https://doi.org/10.1119/1.17733
[3]  Otto, H.H. (2018) World Journal of Condensed Matter Physics, 8, 30-35.
https://doi.org/10.4236/wjcmp.2018.82003
[4]  Otto, H.H. (2018) Journal of Modern Physics, 9, 1-13.
https://doi.org/10.4236/jmp.2018.91001
[5]  El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 57-77.
https://doi.org/10.4236/jqis.2013.32011
[6]  Marek-Crnjac, L. (2013) Cantorian Space-Time Theory. Lambert Academic Publishing, Saarbrücken, 1-50.
[7]  Suleiman, R. (2018) World Journal of Condensed Matter Physics, 8, 130-155.
https://doi.org/10.4236/wjcmp.2018.83009
[8]  Suleiman, R. (2019) Relativizing Newton. Nova Scientific Publisher, New York, 1-207.
[9]  Inwood, M.J. (1995) A Hegel Dictionary. Blackwell Reference, Oxford, U.K.
[10]  Caygill, H.A. (1992) A Kant Dictionary. Blackwell Reference, Oxford, U.K.
[11]  Suleiman, R. (2016) A Relativistic Model of Matter-Wave Duality Explains the Result of the Double-Slit Experiment. 5th International Conference on New Frontiers in Physics, Zurich, 6-14 July 2016, 1-14.
[12]  De Broglie, L. (1923) Nature, 112, 540.
https://doi.org/10.1038/112540a0
[13]  Bohm, D. (1952) Physical Review, 85, 166-179.
https://doi.org/10.1103/PhysRev.85.166
[14]  Bohm, D. (1952) Physical Review, 85, 180-193.
https://doi.org/10.1103/PhysRev.85.180
[15]  Otto, H.H. (2016) World Journal of Condensed Matter Physics, 6, 244-260.
https://doi.org/10.4236/wjcmp.2016.63023
[16]  Otto, H.H. (2019) World Journal of Condensed Matter Physics, 9, 22-36.
https://doi.org/10.4236/wjcmp.2019.91002
[17]  Niehaus, A. (2017) Journal of Modern Physics, 8, 511-521.
https://doi.org/10.4236/jmp.2017.84033
[18]  Schumacher, B. (1995) Physical Review A, 51, 2738-2747.
https://doi.org/10.1103/PhysRevA.51.2738
[19]  Ionescu, L. (2008) On the Arrow of Time. arXiv: 4180v2, 1-22.
[20]  Otto, H.H. (1980) The Reciprocal Lattice: An Exercise. Lecture Given at the Universities of Regensburg, TU Berlin and TU Clausthal.
[21]  Assmus, E.F. (1985) The American Mathematical Monthly, 92, 213-214.
https://doi.org/10.1080/00029890.1985.11971581
[22]  Finch, S.R. (2003) Mathematical Constants. In: Encyclopedia of Mathematics and Its Applications, Vol. 94, Cambridge University Press, New York.
[23]  Otto, H.H. (2017) Nonlinear Science Letters A, 8, 410-412.
[24]  Lange, L.J. (1999) The American Mathematical Monthly, 106, 456-458.
https://doi.org/10.1080/00029890.1999.12005070
[25]  Mushkolaj, S. (2014) Journal of Modern Physics, 5, 1124-1138.
https://doi.org/10.4236/jmp.2014.512115
[26]  Olson, S. (2006) The Golden Section: Nature’s Greatest Secret. Bloomsbury, New York, 64 p.
[27]  Sherbon, M.A. (2014) International Journal of Physical Research, 2, 1-9.
https://doi.org/10.14419/ijpr.v2i1.1817
[28]  Otto, H.H. (2017) Continued Fraction Representations of Universal Numbers and Approximations. Researchgate, 1-4.
[29]  Fisher, R.A. (1915) Biometrica, 10, 507-521.
https://doi.org/10.2307/2331838
[30]  Madelung, E. (1918) Physikalische Zeitschrift, 19, 524-533.
[31]  Triebl, R. (2011) Iterative Bestimmung der Madelung-Konstante für zweidimensionale Kristallstrukturen. Physikalische Projektarbeit, TU Graz.
[32]  Valleta, M. (2013) Astrophysics and Space Science, 345, 1-9.
https://doi.org/10.1007/s10509-013-1388-3
[33]  El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 19, 209-236.
https://doi.org/10.1016/S0960-0779(03)00278-9
[34]  Cantor, G. (1932) Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Springer, Berlin.
https://doi.org/10.1007/978-3-662-00274-2
[35]  El Naschie, M.S. (2017) International Journal of High Energy Physics, 4, 65-74.
https://doi.org/10.11648/j.ijhep.20170406.11
[36]  Urysohn, P. (1922) Comptes Rendus, 175, 440-442.
[37]  Menger, K. (1928) Dimensionstheory. Springer-Verlag, Leipzig und Berlin.
[38]  Hausdorff, F. (1918) Mathematische Annalen, 79, 157-179.
https://doi.org/10.1007/BF01457179
[39]  Otto, H.H. (2018) An Exercise: Cauchy Functions Compared to the Gaussian for Diffraction Line Profile Fitting. Researchgate.
[40]  Uhlenbeck, G.E. and Goudsmit, S. (1926) Nature, 117, 264-265.
https://doi.org/10.1038/117264a0
[41]  He, J.H., Tian, D. and Otto, H.H. (2018) Results in Physics, 11, 362-362.
https://doi.org/10.1016/j.rinp.2018.09.027
[42]  Otto, H.H. (2017) Nonlinear Science Letters A, 8, 413-415.
[43]  Odom, B., Hanneke, D., D’Urso, B. and Gabrielse, G. (2006) Physical Review Letters, 97, Article ID: 030801.
https://doi.org/10.1103/PhysRevLett.97.030801
[44]  He, J.H. (2004) Applied Mathematical Computing, 151, 887-891.
https://doi.org/10.1016/S0096-3003(03)00531-9
[45]  Lin, L., Yu, D.N., He, C.H. and Liu, Y. (2018) Thermal Science, 22, 1849-1852.
https://doi.org/10.2298/TSCI1804849L
[46]  Schwinger, J. (1948) Physical Review, 73, 416-417.
https://doi.org/10.1103/PhysRev.73.416
[47]  Sommerfeld, A. (1919) Atombau und Spektrallinien. Friedrich Vieweg & Sohn, Braunschweig.
[48]  The NIST Reference of Constants, Units and Uncertainty. NIST, Gaithersburg, MD.
[49]  Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M. and Odom, B. (2006) Physical Review Letters, 97, Article ID: 030802.
https://doi.org/10.1103/PhysRevLett.97.030802
[50]  Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M. and Odom, B. (2007) Physical Review Letters, 99, Article ID: 039902.
https://doi.org/10.1103/PhysRevLett.99.039902
[51]  Odom, B. (2004) Fully Quantum Measurement of the Electron Magnetic Momentum. Harvard University, Cambridge, MA.
[52]  Otto, H.H. (2018) Does Nature Journal Once again Oversleep the New Era of Physics. Researchgate.
[53]  Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaram, D., Telling, M., Habicht, K., Smeibidl, P. and Kiefer, K. (2010) Science, 327, 177-180.
https://doi.org/10.1126/science.1180085
[54]  Prester, M. (1999) Physical Review B, 60, 3100-3103.
https://doi.org/10.1103/PhysRevB.60.3100
[55]  Gauthier, R. (2013) Transluminal Energy Quantum Models of the Photon and the Electron. In: The Physics of Realty: Space, Time, Matter, Cosmos, World Scientific, Hackensack, NJ, 445-452.
https://doi.org/10.1142/9789814504782_0045
[56]  El Naschie, M.S., Olsen, S., Helal, M.A., Marec-Crnjac, L. and Nada, S. (2018) International Journal of Innovation in Science and Mathematics, 6, 11-13.
[57]  England. J.L. (2013) Journal of Chemical Physics, 139, Article ID: 121923.
https://doi.org/10.1063/1.4818538
[58]  Pitkänen, M. (2015) Jeremy England’s Vision about Life and Evolution: Comparison with TGD Approach. Researchgate.net, 1-9.
[59]  Rafelski, J. and Ericson, T. (2019) The Tale of the Hagedorn Temperature. In: Rafelski, J., Ed., Melting Hadrons, Boiling Quarks-From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN, Springer, Cham, 41-48.
https://doi.org/10.1007/978-3-319-17545-4_6
[60]  Menger, K. (1928) Dimensionstheorie. B. G. Teubner Publisher, Stuttgart.
https://doi.org/10.1007/978-3-663-16056-4
[61]  Bohr, N. (1934) Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge, UK.
[62]  Bedau, H. and Opperheim, P. (1961) Synthese, 13, 201-232.
https://doi.org/10.1007/BF00489884

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133