全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脱氧合金化最优配料方案研究
Study on the Optimal Batching Scheme for Deoxidation Alloying

DOI: 10.12677/MEng.2019.64024, PP. 170-179

Keywords: 收得率,线性规划,灰色关联度,距离反比加权,拉依达准则
Yield Rate
, Linear Programming, Grey Correlation Degree, Distance Inverse Ratio Weighting, Laida Criterion

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着钢铁行业中高附加值钢种产量的不断提高,如何通过过程控制模型,在线优化控制投入合金种类及数量,在保证钢水质量的同时最大限度地降低合金钢的生产成本是各大钢铁企业提高竞争力所要解决的重要问题。首先进行数据预处理,利用距离反比加权算法和拉依达准则对数据插补和剔除,得出计算合金元素收得率的公式,计算出C收得率为80%~100%,Mn的收得率为85%~100%;对七个自变量进行灰色关联度分析,得出影响C、Mn收得率主要影响因素为转炉终点温度和转炉终点C。建立合金最小成本控制模型,求解得到1吨HRB400B的钢产品最低成本为18359.81元,最优配料方案为:2.121988吨的锰硅合金FeMn68Si18 (合格块)、0.1708846吨的硅铁(合格块)和0.01吨的硅钙碳脱氧剂。
With the continuous improvement of the production of high value-added steel in the steel industry, how to optimize the control of the types and quantities of alloys through the process control model, and to ensure the quality of molten steel while maximally minimizing the production cost of alloy steel is the important issues to be addressed by competitiveness for improvement of major steel companies. Firstly, the data preprocessing is carried out, and the data are interpolated and eliminated by using the distance inverse ratio weighting algorithm and the Laida criterion. The formula for calculating the yield of the alloy elements is obtained, and the C yield is calculated to be 80% - 100%, and the Mn is collected. The yield was 85% - 100%. The gray correlation analysis of the seven independent variables showed that the main influencing factors affecting the yield of C and Mn were the converter end temperature and the converter end point C. The minimum cost control model of the alloy is established to obtain that the lowest cost of 1 ton HRB400B steel product is 18359.81 yuan. The optimal batching scheme is: 2.121988 tons of manganese-silicon alloy FeMn68Si18 (qualified block), 0.1708846 tons of ferrosilicon (qualified block) and 0.01 tons of silicon calcium carbon deoxidizer.

References

[1]  包燕平. 炼钢用合金的减量化应用及控制研究(高质量低成本炼钢连铸新技术) [C]//中国金属学会炼钢分会. 2017年高效率低成本转炉炼钢关键技术高级研讨会交流资. 2017: 21.
[2]  Liu, X., Feng, H.J. and Chen, L.G. (2018) Constructal Design of a Converter Steelmaking Procedure Based on Multi-objective Optimization. Arabian Journal for Science & Engineering, 43, 5003-5015.
https://doi.org/10.1007/s13369-018-3115-4
[3]  陈跃军. 硅锰合金粒度对降低转炉合金消耗的影响分析[J]. 新疆钢铁, 2018(1): 49-51.
[4]  吕翔. 转炉炼钢技术的自动化控制探究[J]. 科技创新与应用, 2018(21): 149-150.
[5]  Zou, C., et al. (2018) Effects of Dust Collection from Converter Steelmaking Process on Combustion Characteristics of Pulverized Coal. Powder Technology, 332, 70-78.
[6]  徐端, 刘士新. 数据驱动和机理模型混合的炼钢–连铸能耗建模研究[J]. 河北冶金, 2018(10): 14-19+40.
[7]  潘军, 邓南阳, 胡惠华, 赵斌, 薛顺, 王义平. 降低低合金钢Q345B合金消耗的工艺优化[J]. 钢铁研究, 2015, 43(2): 56-58.
[8]  Biao, T., et al. (2017) The Research Process on Converter Steelmaking Process by Using Limestone. IOP Conference: Series Earth and Envi-ronmental Science, 81, Article ID: 012175.
https://doi.org/10.1088/1755-1315/81/1/012175
[9]  韩敏, 徐俏, 赵耀, 林东, 杨溪林. 基于收得率预测模型的转炉炼钢合金加入量计算[J]. 炼钢, 2010, 26(1): 44-47.
[10]  王广. 人工神经网络发展现状综述[J]. 中小企业管理与科技(下旬刊), 2017(2): 165-167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133