全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于字典学习和稀疏编码的振动信号去噪技术
Adaptive De-noising for Vibration Signal Based on Dictionary Learning and Sparse Coding

Keywords: 字典学习, 稀疏编码, 自适应滤波, 振动信号
dictionary learning
, sparse coding, adaptive de-nosing, vibration signal

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有机械振动信号去噪算法需要一定先验知识的问题,提出了一种基于字典学习和稀疏编码的自适应去噪滤波方法。根据信号的本质特性,应用在线字典学习方法对原始数据进行学习和训练,寻求数据驱动的最优字典空间。引入正交匹配追踪算法,确定原始信号在最优字典空间上的稀疏表示。基于稀疏编码和优化字典,重构原始信号,实现信号去噪。仿真和试验结果表明,相对于现有去噪方法,基于字典学习和稀疏编码的方法自适应能力强,去噪效果好
While the existing de-noising algorithm requires prior knowledge of vibration signals, a new adaptive de-noising algorithm is proposed based on sparse coding and dictionary learning (DLSDF). Depending on the essential attribute of different signals, the optimal dictionary of data-driving is learned from the raw data. The orthogonal matching pursuit algorithmworks out the sparsest coefficients. Then, the de-noised signal is reconstructed using sparse coding and the optimal dictionary. Simulation and experimental results show that the algorithm based on sparse coding and dictionary learning is adaptive, and de-noising is stronger than the existing one.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133