全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

DELTA势阱改进QPSO优化BP算法及其应用
BP neural network optimized with QPSO algorithm improved by DELTA potential trough and its application

DOI: 10.7523/j.issn.2095-6134.2015.03.019

Keywords: BP神经网络,PSO模型,QPSO模型,&delta,势阱,GDP
back-propagation neural network
,PSO model,QPSO model,δ potential trough,GDP

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了改进BP算法预测性能,提出QPSO-BP模型.该模型采用DELTA势阱改进的量子粒子群(QPSO)算法优化BP网络的权值与阈值,然后利用各年的GDP数据进行训练和预测.结果表明:经过DELTA势阱改进的QPSO优化BP算法模型比PSO-BP模型和BP神经网络更稳定,预测精度更高且泛化能力更强.与文献中所用模型的运算结果相比较,这种改进模型运算结果的相对误差和平均误差更小,在准确性上也有一定的优势.

References

[1]  Ismail A, Jeng D S, Zhang L L. An optimised product-unit neural network with a novel PSO-BP hybrid training algorithm: applications to load-deformation analysis of axially loaded piles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2 305-2 314.
[2]  Liu Y P, Wu M G, Qian J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochimica acta, 2007, 454(1): 64-68.
[3]  曾建潮, 介婧, 崔志华. 微粒群算法[M]. 北京: 科学出版社, 2004: 1-23, 116-139.
[4]  喻胜华, 邓娟.基于主成分分析和贝叶斯正则化BP神经网络的GDP预测[J].湖南大学学报:社科版,2011, 25(6): 42-45.
[5]  王鹏, 刘渊.基于改进的QPSQ训练BP网络的网络流量预测[J].计算机应用研究, 2009, 26(1): 299-301.
[6]  Baffigi A, Golinelli R, Parigi G. Bridge models to forecast the euro area GDP[J]. International Journal of Forecasting, 2004, 20: 447-460.
[7]  Zukime M, Junoh H M, Universiti K, et al. Predicting GDP growth in Malaysia using knowledge-based economy indicators: a comparison between neural network and econometric approaches[J]. Sunway College Journal, 2004(1):39-50.
[8]  熊志斌.基于ARIMA与神经网络集成的GDP时间序列预测研究[J].数理统计与管理,2011, 30(2): 306-314.
[9]  何新易.基于时间序列模型的中国GDP增长预测分析[J].财经理论与实践,2012, 33(4): 96-99.</p>
[10]  <p> Yu Z F, Li J W, Liu K. Radar emitter recognition based on PSO-BP network[J]. AASRI Procedia, 2012(1):213-219.
[11]  王亮, 张宏伟, 岳琳, 等. PSO-BP 模型在城市用水量短期预测中的应用[J]. 系统工程理论与实践, 2007, 27(9): 165-170.
[12]  Liu K, Guo W Y, Shen X L, et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network[J]. Energy Procedia, 2012, 14: 1 918-1 924.
[13]  王德明, 王莉, 张广明. 基于遗传 BP 神经网络的短期风速预测模型[J]. 浙江大学学报: 工学版, 2012, 46(5): 837-841.
[14]  Sun J. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C]//IEEE International Conference on Systems, Man and Cybernetics, 2005: 3 049-3 054.
[15]  Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Press, 1995(4): 1 942-1 948.
[16]  Huang J, Luo H, Wang H, et al. Prediction of time sequence based on GA-BP neural net[J]. Journal of University of Electronic Science and Technology of China, 2009, 5:29.
[17]  Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior[C]//Congress on Evolutionary Computation. 2004, 325-331.
[18]  Clerc M,Kennedy J. The partiele swarm: explosion,stability and convergence in a muli-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6: 58-73.
[19]  向平, 张蒙, 张智, 等. 基于BP神经网络的城市时用水量分时段预测模型[J]. 中南大学学报:自然科学版, 2012,43(8): 3 320-3 324.
[20]  Majhi R, Panda G, Sahoo G. Efficient prediction of exchange rates with low complexity artificial neural network models[J]. Expert System with Applications, 2009,36: 181-189.
[21]  桂文林, 韩兆洲.基于状态空间模型的中国季度GDP季节调整(1996—2009年)[J].数量经济技术经济研究, 2011(7): 77-89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133