|
- 2016
音速喷嘴内水蒸气自发凝结流动自激振荡和分歧现象
|
Abstract:
气体在喷嘴中流动伴有很大的温降, 会使其中的水蒸气发生凝结, 并对其计量产生影响.针对音速喷嘴中过热水蒸气自发凝结流动产生的非稳态自激振荡和流动分歧现象, 建立了考虑黏性的水蒸气自发凝结数值模型; 根据凝结诱导的气动激波的振荡幅度将自激振荡分为3种不同的模式, 其中模式Ⅲ的压力波动会波及喉部上方, 且会出现非对称流动分歧现象, 而模式Ⅰ中气动激波仅在平衡位置附近小幅度振荡; 最后研究了自激振荡对喷嘴的质量流量的影响, 并给出了相应的修正系数, 最小值为0.988, 需要加以重视.
The gas temperature will drop greatly when the gas flows through the nozzle,which leads to the condensation of the vapor. To investigate the phenomenon of self-excited oscillation and bifurcation induced by spontaneous condensation of the pure superheated steam flow,a numerical viscous model of supersonic nozzle flow was established. Three self-excited periodic oscillation modes were classified according to the oscillation amplitude of aerodynamic shock. It is found that the pressure fluctuations spread to the upstream of the nozzle throat in mode Ⅲ,while the shock in modeⅠoscillates with small amplitude. Moreover,the effect of self-excited oscillation on the mass flow rate of nozzle was studied in detail. Correction factor for condensation effect was obtained and the minimum value was 0.988,which calls for pay more attention
[1] | Chahine K, Ballico M. Evaluation of the effect of relative humidity of air on the coefficients of critical flow venturi nozzles[C]//<i>FLOMEKO</i>. Paris, France, 2013:24-26. |
[2] | Wyslouzil B E, Heath C H, Cheung J L, et al. Binary condensation in a supersonic nozzle[J]. <i>The Journal of Chemical Physics</i>, 2000, 113(17):7317-7329. |
[3] | 李亮. 存在自发凝结的湿蒸汽两相非平衡凝结流动数值研究[D]. 西安:西安交通大学能源与动力工程学院, 2002. |
[4] | Delale C F, Lamanna G, van Dongen M E H. On the stability of stationary shock waves in nozzle flows with homogeneous condensation[J]. <i>Physics of Fluids</i>, 2001, 13(9):2706-2719. |
[5] | Wagner W, Cooper J R, Dittmann A, et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[J]. <i>Journal of Engineering for Gas Turbines and Power</i>, 2000, 122(1):150-184. |
[6] | Li Chunhui, Wang Chi. The humidity correction on the flow through sonic nozzle[J]. <i>Acta Metrologica Sinica</i>, 2007(Suppl 1):160-164(in Chinese). |
[7] | Lim J M, Yoon B H, Oh Y K, et al. The humidity effect on air flow rates in a critical flow venturi nozzle [J]. <i>Flow Measurement and Instrumentation</i>, 2011, 22(5):402-405. |
[8] | 蔡颐年, 王乃宁. 湿蒸汽两相流[M]. 西安:西安交通大学出版社, 1985. |
[9] | Cai Yinian, Wang Naining. <i>Two-Phase Wet Steam Flow</i> [M]. Xi’an:Xi’an Jiaotong University Press, 1985(in Chinese). |
[10] | Pouring A. Thermal choking and condensation in nozzles [J]. <i>Phys Fluids</i>, 1965, 8(10):1802-1810. |
[11] | Adam S, Schnerr G. Instabilities and bifurcation of non-equilibrium two-phase flows[J]. <i>Journal of Fluid Mechanics</i>, 1997, 348:1-28. |
[12] | Li Liang, Numerical Study on the Nonequilibrium Wet Steam Two-phase Flows with Spontaneous Condensation [D]. Xi’an:School of Energy and Power Engineering, Xi’an Jiaotong University, 2002(in Chinese). |
[13] | Ma Q F, Hu D P, Jiang J Z, et al. A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow[J]. <i>International Journal of Computational Fluid Dynamics</i>, 2009, 23(3):221-231. |
[14] | Wróblewski W, Dykas S, Gepert A. Steam condensing flow modeling in turbine channels[J]. <i>International Journal of Multiphase Flow</i>, 2009, 35(6):498-506. |
[15] | Dykas S, Wróblewski W. Numerical modelling of steam condensing flow in low and high-pressure nozzles[J]. <i>International Journal of Heat & Mass Transfer</i>, 2012, 55(21/22):6191-6199. |
[16] | Simpson D A, White A J. Viscous and unsteady flow calculations of condensing steam in nozzles[J]. <i>International Journal of Heat and Fluid Flow</i>, 2005, 26(1):71-79. |
[17] | Gerber A G, Kermani M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J]. <i>International Journal of Heat and Mass Transfer</i>, 2004, 47(10):2217-2231. |
[18] | Moore M J, Walters P T, Crane R I, et al. Predicting the fog-drop size in wet-steam turbines[J]. <i>Institute of Mechanical Engineering</i>, 1974, C37/73:101-109. |
[19] | Ding H B, Wang C, Zhao Y K. Flow characteristics of hydrogen gas through a critical nozzle[J]. <i>International Journal of Hydrogen Energy</i>, 2014, 39(8):3947-3955. |
[20] | Yu X G, Xie D, Wang C, et al. Numerical investigation of oscillating flows with nonequilibrium condensation in nozzles[J]. <i>Journal of Propulsion & Power</i>, 2015, 31(3):837-842. |
[21] | 林建忠. 流体力学[M]. 北京:清华大学出版社, 2013. |
[22] | Skilling S A. An Analysis of the Condensation Phenomena Occurring in Wet Steam turbine[D]. Birmingham:University of Birmingham, 1987. |
[23] | Lin Jianzhong. <i>Hydromechanics</i>[M]. Beijing:Tsing- hua University Press, 2013(in Chinese). |
[24] | Aschenbrenner A, Narjes L. Untersuchung des feuchteeinflusses auf den durchfluss durch düsen bei überkritischem druckverh?ltnis[J]. <i>PTB Mitteilungen</i>, 1973, 84:381-385. |
[25] | 李春辉, 王池. 通过音速喷嘴气体流量的湿度修正方法研究[J]. 计量学报, 2007(增1):160-164. |
[26] | Stewart D G, Watson J T R, Vaidya A M. The effect of using atmospheric air in critical flow nozzles[C]//<i>Proc</i> 4<i>th Int Symp Fluid Flow Meas.</i> Denver, Colorado, USA. 1999. |