|
- 2016
基于一维不定常流理论和Riemann间断分解的改进CSPM
|
Abstract:
针对改进的光滑粒子方法(CSPM)在求解非连续流体动力学问题时出现解的非物理振荡的不足, 基于一维不定常流理论和Riemann间断分解的思想, 提出了一种改进的CSPM, 提高了其解决间断问题时的精度, 并减小了非物理振荡.该方法的可靠性以及适用范围得到了两组典型一维激波管算例的验证.计算结果表明, 本文提出的方法在求解强间断的精度方面要优于传统的SPH方法, 能有效消除间断面上的非物理振荡, 在激波捕捉方面仍有较好的精度.
In order to improve corrective smoothed particle method(CSPM)in solving the discontinuous phenomena of fluid dynamics,a new method named modified CSPM is proposed based on one-dimensional non-steady flow theory and Riemann solution. This new approach improves the CSPM’s deficiencies such as low-accuracy and unphysical vibration in solving the discontinuous phenomena. Moreover,two numerical cases of classical one-dimensional shock tube are carried out to examine the performance of the new method. Results show that the new method functions well in solving strong discontinuous phenomena,and even in the situation that traditional SPH can’t work,the new method still can get satisfactory result in shock wave capturing
[1] | Lucy L B. A numerical approach to testing the fission hypothesis [J]. <i>Astronomical Journal</i>, 1977, 82(12):1013-1024. |
[2] | Monaghan J J. Why particle methods work[J]. <i>SIAM Journal on Scientific & Statistical Computing</i>, 1982, 3(4):422-433. |
[3] | Liu G R, Liu M B. 光滑粒子流体动力学――一种无网格粒子方法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙:湖南大学出版社, 2005. |
[4] | versity Press, 2005(in Chinese). |
[5] | Chen J K, Beraun J E, Jih C J. Completeness of corrective smoothed particle method for linear elastodynamics [J]. <i>Computational Mechanics</i>, 1999, 24(4):273-285. |
[6] | Chen J K, Beraun J E. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems [J]. <i>Comput Methods Appl Mech Engrg</i>, 2000, 190(1/2):225-239. |
[7] | 高巍然, 强洪夫, 张世英. Godunov型CSPM方法[J]. 计算力学学报, 2007, 24(5):638-642. |
[8] | Gao Weiran, Qiang Hongfu, Zhang Shiying. Godunov-type corrective smoothed particle method(CSPM)[J]. <i>Chinese Journal of Computational Mechanics</i>, 2007, 24(5):638-642(in Chinese). |
[9] | Monaghan J J. SPH and Riemann solvers[J]. <i>Journal of Computational Physics</i>, 1997, 136(2):298-307. |
[10] | 李维新. 一维不定常流与冲击波[M]. 北京:国防工业出版社, 2003. |
[11] | Li Weixin. <i>One-Dimensional Nonsteady Flow and Shock Waves</i>[M]. Beijing:National Defence Industry Press, 2003(in Chinese). |
[12] | 毛益明. 水介质消波减爆作用的理论和试验研究 [D]. 南京:解放军理工大学工程兵工程学院, 2009. |
[13] | 水鸿寿. 一维流体力学差分方法[M]. 北京:国防工业出版社, 1998. |
[14] | Parshikov A N, Medin S A. Smoothed particle hydrodynamics using interparticle contact algorithms[J]. <i>Journal of Computational Physics</i>, 2002, 180(1):358-382. |
[15] | Mao Yiming. Theoretical and Experimental Research on the Mitigating Effect of Water[D]. Nanjing:Engineer-ing Institute of the Engineer Corps, PLA University of Science and Technology, 2009(in Chinese). |
[16] | Shui Hongshou. <i>Differential Methods for One Dimensional Fluid Mechanics</i>[M]. Beijing:National Defence Industry Press, 1998(in Chinese). |
[17] | Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:Theory and application to non-spherical stars [J]. <i>Monthly Notices of the Royal Astronomical Society</i>, 1977, 181(2):375-389. |
[18] | Liu G R, Liu M B. <i>Smoothed Particle Hydrodynamics</i>:<i>A Meshfree Particle Method</i>[M]. Han Xu, Yang Gang, Qiang Hongfu, Trans. Changsha:Hunan Uni |
[19] | Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. <i>Computer Methods in Applied Mechanics and Engineering</i>, 1999, 46(2):231-252. |
[20] | Dukowicz J K. A general non-iterative Riemann solver for Godunov’s method[J]. <i>Journal of Computation Physics</i>, 1985, 61(1):119-137. |