|
- 2018
异辛烷掺混乙醇在高温下层流预混燃烧特性的研究
|
Abstract:
利用高速纹影摄像系统,在定容燃烧弹上对异辛烷掺混乙醇的层流预混燃烧特性进行了研究,获得了两组压力为0.1、0.5 MPa,5组乙醇体积掺混比为0、0.2、0.4、0.6、0.8、1.0,初始温度为433 K下的层流火焰速率。为了去除火焰面拉伸作用的影响,数据处理采用非线性方法进行推导。研究结果表明,在不同当量比条件下,异辛烷/乙醇混合燃料的层流火焰速率均随初始压力的增加而降低,随乙醇体积掺混比的增加而逐渐增大。根据一步总反应假设理论,对该实验规律进行了分析,并且计算了热力学参数、输运特性参数和总体活化能,发现了化学反应动力学因素对层流燃烧速率的变化所起的主导作用。利用Chemkin软件,对预混层流燃烧速率进行了数值模拟,结果表明,Dagaut模型对异辛烷/乙醇混合燃料的预测效果更好。另外,采用Dagaut模型,对总体反应路径和火焰面结构进行了分析,发现乙醇的替代作用是乙醇掺入后对混合燃料层流燃烧速率起促进作用的原因。
The laminar flame speeds of isooctane/ethanol/air mixtures were measured with the outwardly expanded spherical flame and high??speed schlieren photography over a wide range of ethanol blending ratios (0, 0.2, 0.4, 0.6, 0.8, 1.0) at two initial pressures (0.1, 0.5 MPa) and elevated initial temperature(433 K). Nonlinear methodology was employed to remove the stretch effect in the data processing. Results at three equivalent ratios showed that the laminar flame speeds of the blends significantly increase with the decrease of initial pressure and slightly increase with blending ratio of ethanol. The effect of blending ratio on the laminar flame speed of the mixtures was explained through one??step total reaction hypothesis theory. The overall activation energy was obtained by calculating the parameters regarding the thermodynamics and transport behaviors, and the chemical kinetics was found to dominate the laminar flame speed variation. The experimental data were adopted to validate two models and the Dagaut model yielded better prediction on our experimental results. Finally, the effect of ethanol addition was explained through the analysis on the reaction pathway and flame structure, revealing that ethanol substitution is the intrinsic cause leading to the variation of laminar flame speeds
[1] | [9]VAREA E, MODICA V, RENOU B, et al. Pressure effects on laminar burning velocities and Markstein lengths for isooctane??ethanol??air mixtures [J]. Proceedings of the Combustion Institute, 2013, 34(1): 735??744. |
[2] | [10]FRASSOLDATI A, CUOCI A, FARAVELLI T, et al. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures [J]. Combustion Science & Technology, 2010, 182(4/5/6): 653??667. |
[3] | [1]董素荣, 宋崇林, 赵昌普, 等. 乙醇?财?油燃料汽油机非常规污染物的排放特性 [J]. 天津大学学报(自然科学与工程技术版), 2006, 39(1): 68??72. |
[4] | DONG Surong, SONG Chonglin, ZHAO Changpu, et al. The emission characteristics of the unconventional pollutant of ethanol??gasoline gasoline engine [J]. Journal of Tianjin University(Natural Science and Engineering), 2006, 39(1): 68??72. |
[5] | [2]SARATHY S M, WALD P O, HANSEN N, et al. Alcohol combustion chemistry [J]. Progress in Energy and Combustion Science, 2014, 44: 40??102. |
[6] | [3]DEMIRBAS A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections [J]. Energy Conversion and Management, 2008, 49(8): 2106??2116. |
[7] | [4]WANG S, JI C, ZHANG B. Effect of hydrogen addition on combustion and emissions performance of a spark??ignited ethanol engine at idle and stoichiometric conditions [J]. International Journal of Hydrogen Energy, 2010, 35(17): 9205??9213. |
[8] | [5]ANDERSON J E, DICICCO D M, GINDER J M, et al. High octane number ethanol??gasoline blends: quantifying the potential benefits in the United States [J]. Fuel, 2012, 97: 585??594. |
[9] | [6]张庆峰, 郑朝蕾, 何祖威, 等. 基于响应曲面法的汽油替代混合物辛烷值的预测 [J]. 内燃机学报, 2011, 29(5): 427??430. |
[10] | ZHANG Qingfeng, ZHENG Chaolei, HE Zuwei, et al. Prediction of octane number of gasoline substitute mixtures based on response surface method [J]. Journal of Internal Combustion Engine 2011, 29(5): 427??430. |
[11] | [7]BROUSTAIL G, SEERS P, HALTER F, et al. Experimental determination of laminar burning velocity for butanol and ethanol iso??octane blends [J]. Fuel, 2011, 90(1): 1??6. |
[12] | [8]VAN LIPZIG J P J, NILSSON E J K, DE GOEY L P H, et al. Laminar burning velocities of n??heptane, iso??octane, ethanol and their binary and tertiary mixtures [J]. Fuel, 2011, 90(8): 2773??2781. |
[13] | [11]郑东, 钟北京. 异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型 [J]. 物理化学学报, 2012, 28(9): 2029??2036. |
[14] | ZHENG Dong, ZHONG Beijing. Chemical kinetics model of the ignition of isoctane/n??heptane/ethanol tricomponent fuel [J]. Acta Physico??Chimica Sinica, 2012, 28(9): 2029??2036. |
[15] | [12]ANDRAE J C G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel, 2008, 87(10/11): 2013??2022. |
[16] | [13]DAGAUT P, TOGB C. Oxidation kinetics of mixtures of iso??octane with ethanol or butanol in a jet??stirred reactor: experimental and modeling study [J]. Combustion Science & Technology, 2012, 184(7/8): 1025??1038. |
[17] | [14]KELLEY A P, LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames [J]. Combustion and Flame, 2009, 156(9): 1844??1851. |
[18] | [15]CHEN Z. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames [J]. Combustion and Flame, 2011, 158(2): 291??300. |
[19] | [16]FRASSOLDATI A, CUOCI A, FARAVELLI T, et al. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures [J]. Combustion Science and Technology, 2010, 182(4/5/6): 653??667. |
[20] | [17]LI Q, ZHANG W, JIN W, et al. Laminar flame characteristics and kinetic modeling study of methanol??isooctane blends at elevated temperatures [J]. Fuel, 2016, 184: 836??845. |