全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

二阶随机共振系统的冲击信号检测
A Detection Method of Impact Signals Based on Second??Order Stochastic Resonance

DOI: 10.7652/xjtuxb201806016

Keywords: 冲击信号,特征系数,相似度,随机共振
impact signal
,characteristic coefficient,similarity,stochastic resonance

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决单一峭度指标度量冲击信号出现漏检的问题,提出了一种基于特征系数的二阶欠阻尼随机共振冲击信号检测(CCSR)方法。由于相似度可以定量地表征两个信号的相似程度,故将峭度与相似度结合,构造出新的特征系数指标;然后以特征系数为目标函数,根据网格搜索算法自适应地寻找系统参数,当目标函数取最大值时此参数为最佳参数;最后采用CWRU轴承数据进行轴承内圈故障诊断。仿真结果与实际检测结果表明,CCSR方法能够有效地检测出目标信号,实现轴承内圈磨损故障的精确诊断;在相同条件下,采用特征系数度量冲击信号比峭度检测效果提高了约20%。
A second order detection method of underdamped stochastic resonance impact signals based on the characteristic coefficient (CCSR) is proposed to address the problem of undetection of the impact signal with single kurtosis index. Because the similarity can quantitatively characterize the similarity between two signals, kurtosis and similarity are combined to construct a new index of characteristic coefficient. Then, the characterize coefficient is used as an object function and the grid search algorithm is used to adaptively find the optimal system parameters such that the objective function achieves the maximum. Finally, the bearing inner??race failures are diagnosed by the data of CWRU. Simulation and practical bearing test results show that the CCSR method effectively detects the target signal and achieves bearing diagnosis. A comparison with the kurtosis under the same conditions show that the test results of using characterizing coefficient increases about 20%

References

[1]  [1]BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance [J]. Journal of Physics: AMathematical and General, 1981, 14(11): 453??457.
[2]  [2]ASDI A, TEWFIK A. Detection of weak signals using adaptive stochastic resonance [C]∥The IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ, USA: IEEE, 1995: 1332??1335.
[3]  [5]QIAO Zijian, PAN Zhengrong. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient [J]. Measurement Science & Technology, 2015, 26(8): 085014??085029.
[4]  [6]李继猛, 陈雪峰, 何正嘉. 采用粒子群算法的冲击信号自适应单稳态随机共振检测方法 [J]. 机械工程学报, 2011, 47(21): 58??63.
[5]  [7]谭继勇, 陈雪峰, 何正嘉. 冲击信号的随机共振自适应检测方法 [J]. 机械工程学报, 2010, 46(23): 61??67.
[6]  LENG Yonggang, ZHAO Yue. Pulse response of a monostable system [J]. Acta Physica Sinica, 2015, 64(21): 212??221.
[7]  [9]石鹏, 冷永刚, 范胜波, 等. 双稳系统处理微弱冲击信号的研究 [J]. 振动与冲击, 2012, 31(6): 150??154.
[8]  [10]杜非, 陈世利, 曾周末, 等. 基于反向随机共振的衰减振荡信号自适应检测 [J]. 仪器仪表学报, 2015, 36(12): 2650??2656.
[9]  DU Fei, CHEN Shili, ZENG Zhoumo, et al. Adaptive detection method of the damped oscillation signal based on reversed stochastic resonance [J]. Chinese Journal of Scientific Instrument, 2015, 36(12): 2650??2656.
[10]  [3]COLLINS J J, CHOW C C, IMHOFF T T. Aperiodic stochastic resonance in excitable systems [J]. Physical Review: EStatistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 52(4): 3321??3324.
[11]  [4]雷亚国, 韩冬, 林京, 等. 自适应随机共振新方法及其在故障诊断中的应用 [J]. 机械工程学报, 2012, 48(7): 62??67.
[12]  LEI Yaguo, HAN Dong, LIN Jing, et al. New adaptive stochastic resonance method and its application to fault diagnosis [J]. Journal of Mechanical Engineering, 2012, 48(7): 62??67.
[13]  [11]冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究 [J]. 物理学报, 2014, 63(2): 34??42.
[14]  LENG Yonggang, LAI Zhihui. Generalized parameter??adjusted stochastic resonance of duffing oscillator based on Kramers rate [J]. Acta Physica Sinica, 2014, 63(2): 34??42.
[15]  [12]赖志慧, 冷永刚, 范胜波. 级联双稳Duffing系统的随机共振研究 [J]. 物理学报, 2013, 62(7): 69??77.
[16]  LAI Zhihui, LENG Yonggang, FAN Shengbo. Stochastic resonance of cascaded bistable Duffing system [J]. Acta Physica Sinica, 2013, 62(7): 69??77.
[17]  [13]李继猛. 随机共振理论及风电装备故障诊断应用研究 [D]. 西安: 西安交通大学, 2013: 62??66.
[18]  LI Jimeng, CHEN Xuefeng, HE Zhengjia. Adaptive monostable stochastic resonance based on PSO with application in impact signal detection [J]. Journal of Mechanical Engineering, 2011, 47(21): 58??63.
[19]  TAN Jiyong, CHEN Xuefeng, HE Zhengjia. Impact signal detection method with adaptive stochastic resonance [J]. Journal of Mechanical Engineering, 2010, 46(23): 61??67.
[20]  [8]冷永刚, 赵跃. 单稳系统的脉冲响应研究 [J]. 物理学报, 2015, 64(21): 212??221.
[21]  SHI Peng, LENG Yonggang, FAN Shengbo, et al. A bistable system for detection a weak pulse signal [J]. Journal of Vibration and Shock, 2012, 31(6): 150??154.
[22]  [14]曹衍龙, 杨毕玉, 杨将新, 等. 基于变尺度随机共振的冲击信号自适应提取与识别方法 [J]. 振动与冲击, 2016, 35(5): 65??69.
[23]  CAO Yanlong, YANG Biyu, YANG Jiangxin, et al. Impact signal adaptive extraction and recognition based on a scale transformation stochastic resonance system [J]. Journal of Vibration and Shock, 2016, 35(5): 65??69.
[24]  [15]QIAO Zijian, LEI Yaguo, LIN Jing, et al. An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis [J]. Mechanical Systems and Signal Processing, 2017, 84: 731??746.
[25]  [16]LI Jimeng, ZHANG Yungang, XIE Ping. A new adaptive cascaded stochastic resonance method for impact features extraction in gear fault diagnosis [J]. Measurement: Journal of the International Measurement Confederation, 2016, 91: 499??508.
[26]  [17]何正嘉. 现代信号处理及工程应用 [M]. 西安: 西安交通大学出版社, 2007: 204??205.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133