全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

轮式管道机器人过弯动态特性分析
Analysis for Dynamic Characteristics of Wheeled Pipe Robot in Elbow

DOI: 10.7652/xjtuxb201808014

Keywords: 管道机器人,相对距离,Adams软件,动态特性
pipe robot
,relative distance,Adams software,dynamic characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了详细地了解管道机器人过弯时的动态特性,设计了一种全驱动轮式管道机器人。基于坐标转换法,分析了机器人过弯时质心与管道中线的相对距离Δx发生变化对机器人运动特性的影响;基于力学虚功原理,分析了机器人过弯时Δx发生变化对机器人受力情况的影响。通过Adams软件对机器人过弯过程中的运动状态和受力情况进行了仿真,经分析发现管道机器人在过弯过程中,Δx先快速增大后略低速减小,在运动特性方面,随着Δx增大,外驱动轮运动速度随之增大,内驱动轮运动速度则有所减小。当内驱动轮速度达到最低时,外驱动轮与内驱动轮的速度之比会发生小幅度波动;在受力情况方面,随着Δx增大,内、外驱动轮与管壁的接触力随之增加,此仿真模型中,在入弯阶段外驱动轮和内驱动轮与管壁接触力大小之比为1.4,出弯阶段此接触力之比约降为0.9。从平稳性角度来看,与入弯和出弯两个阶段相比,过渡阶段在运动和受力上均相对不稳定,故当机器人过弯时,将Δx的变化纳入运动分析方程有利于获得其更加精确的动态特性。
A fully driven wheeled pipe robot is designed to understand the dynamic characteristics of pipe robots over a curve in detail. Influences of the changing distance Δx between the center of mass and the center line of the pipeline on the motion characteristics of the robot are analyzed based on the coordinate transformation method, and the effects of the relative distance on the force on the robot are analyzed based on the principle of mechanical virtual work. The motion state and contact force of the robot are simulated through the ADAMS software. It is found from the analysis that the relative distance increases rapidly at first and then reduces at a lower speed during the cornering process. The motion state has the following characteristic that the speed of the outer drive wheel increases and the speed of the inner drive wheel reduces as Δx increases. When the speed of the inner drive wheel reaches its minimum value, the ratio of the speed of the outer drive wheel to the inner drive wheel has small fluctuation. The contact force between both inner or outer drive wheels and the pipe wall increases as Δx increases. Simulation also shows that the ratio of the contact force between the outer drive wheel and the pipe wall to the contact force between the inner drive wheel and the pipe wall is 1??4 during entering elbow stage, while this contact force ratio reduces to about 0??9 during exiting elbow stage. It is found from the standpoint of stability that the transitional period is relatively unstable in both the motion and the stress compared to the two stages of entering and exiting. Therefore, when the cornering process of a pipe robot is analyzed, considering Δx variation in the motion analysis equation will be beneficial to obtain its more accurate dynamic characteristics

References

[1]  [2]KOLESNIKOV Y L, PTITRYNA A S, BARANOVA O V, et al. Mathematical model for pipeline control applying in??line robotic device [J]. Indian Journal of Science & Technology, 2016, 9(11): 1??11.
[2]  [3]REN X X, HU W T, LV H X, et al. Research and design of a robot for pipeline inspection and cleaning [J]. Journal of Electric Power, 2016, 31(2): 142??147.
[3]  [4]CAI Z, LIN C, HUO D, et al. Design and analysis of cleaning mechanism for an intermittent screw??driven pipeline robot [J]. Journal of Mechanical Science & Technology, 2017, 31(2): 911??921.
[4]  LI Qingkai, TANG Dewei, JIANG Shengyuan, et al. Body??twist of pipeline robot in elbow [J]. Journal of Xi’an Jiaotong University, 2011, 45(10): 19??23.
[5]  [7]唐德威, 李庆凯, 姜生元, 等. 三轴差速式管道机器人过弯管时的差速特性及拖动力分析 [J]. 机器人, 2010, 32(1): 91??96.
[6]  TANG Dewei, LI Qingkai, JIANG Shengyuan, et al. Differential property and traction force of tri??axial differential pipeline robot in elbow [J]. Robot, 2010, 32(1): 91??96.
[7]  TANG Dewei, LIANG Tao, JIANG Shengyuan, et al. Mechanism and simulation analysis of mechanical self??adaptive pipe??robot [J]. Robot, 2008, 30(1): 29??33.
[8]  TANG Dewei, LI Qingkai, JIANG Shengyuan, et al. Design and analysis of a pipeline robot with the function of differential movement [J]. Journal of Mechanical Engineering, 2011, 47(13): 1??8.
[9]  [10]LI Qingkai, TANG Dewei, JIANG Shengyuan, et al. Research and simulation on the driving property of a tri??axial differential pipeline robot [J]. Journal of Harbin Engineering University, 2012, 33(6): 753??758.
[10]  [16]KAKOGAWA A, MA S. Design of a multilink??articulated wheeled pipeline inspection robot using only passive elastic joints [J]. Advanced Robotics, 2017, 32(1): 1??14.
[11]  [17]王辰忠, 王挺, 刘君, 等. 差动式自适应管道机器人的设计与运动分析研究 [J]. 机电工程, 2016, 33(4): 395??400.
[12]  ZHANG Xuewen, DENG Zongquan, JIA Yazhou, et al. Design and research of a tri??axial differential drive unit for in??pipe robot [J]. Robot, 2008, 30(1): 22??28.
[13]  [22]姜生元, 邓宗全, 李瑰贤. 三轴差速器及其在管道机器人驱动系统中的应用研究 [J]. 中国机械工程, 2002, 13(10): 877??879.
[14]  JIANG Shengyuan, DENG Zongquan, LI Guixian. Study on the tri??axial differential and its application in the driving system of wheel??type in??pipe robot [J]. China Mechanical Engineering, 2002, 13(10): 877??879.
[15]  [23]CRAIG J J. 机器人学导论 [M]. 3版. 北京: 机械工业出版社, 2006: 26??39.
[16]  [24]刘延柱, 潘振宽, 戈新生. 多体系统动力学 [M]. 2版. 北京: 高等教育出版社, 2014: 44??46.
[17]  LIANG Liang, GUO Zhenhua, ZHU Zongming, et al. Steering analysis of a four??spiral in??pipe robot [J]. Journal of Machine Design, 2015, 32(7): 16??19.
[18]  [1]梁亮, 郭振华, 朱宗铭, 等. 一种四螺旋管道机器人的转向分析 [J]. 机械设计, 2015, 32(7): 16??19.
[19]  XU Fengping, DENG Zongquan. Research on traveling??capability of pipeline robot in elbow [J]. Robot, 2004, 26(2): 155??160.
[20]  [6]李庆凯, 唐德威, 姜生元, 等. 管道机器人弯管运动转体原因分析 [J]. 西安交通大学学报,2011,45(10): 19??23.
[21]  [8]唐德威, 梁涛, 姜生元, 等. 机械自适应管道机器人的机构原理与仿真分析 [J]. 机器人, 2008, 30(1): 29??33.
[22]  [9]唐德威, 李庆凯, 姜生元, 等. 具有差动运动功能的管道机器人设计与分析 [J]. 机械工程学报, 2011, 47(13): 1??8.
[23]  [12]KWON Y S, YI B J. Design and motion planning of a two??module collaborative indoor pipeline inspection robot [J]. IEEE Transactions on Robotics, 2012, 28(3): 681??696.
[24]  [13]JEON W, KIM I, PARK J, et al. Design and control method for a high??mobility in??pipe robot with flexible links [J]. Industrial Robot, 2013, 40(3): 261??274.
[25]  [14]ROLLINSON D, CHOSET H. Pipe network locomotion with a snake robot [J]. Journal of Field Robotics, 2016, 33(3): 322??336.
[26]  [15]KAKOGAWA A, MA S. Stiffness design of springs for a screw drive in??pipe robot to pass through curved pipes and vertical straight pipes [J]. Advanced Robotics, 2012, 26(3/4): 253??276.
[27]  WANG Chenzhong, WANG Ting, LIU Jun, et al. Design and motion analysis of differential??drive adaptive in??pipe robot [J]. Journal of Mechanical & Electrical Engineering, 2016, 33(4): 395??400.
[28]  [18]ZHU X, WANG W, ZHANG S, et al. Experimental research on the frictional resistance of fluid??driven pipeline robot with small size in gas pipeline [J]. Tribology Letters, 2017, 65(2): 49.
[29]  [19]QIAO J, SHANG J. Application of axiomatic design method in in??pipe robot design [J]. Robotics and Computer Integrated Manufacturing, 2013, 29(4): 49??57.
[30]  [20]蔡业彬. 模块化设计方法及其在机械设计中的应用 [J]. 机械设计与制造, 2005(8): 154??156.
[31]  CAI Yebin. The method of modularization design and its application in machine design [J]. Machinery Design and Manufacture, 2005(8): 154??156.
[32]  [21]张学文, 邓宗全, 贾亚洲, 等. 管道机器人三轴差动式驱动单元的设计研究 [J]. 机器人, 2008, 30(1): 22??28.
[33]  [5]许冯平, 邓宗全. 管道机器人在弯道处通过性的研究 [J]. 机器人, 2004, 26(2): 155??160.
[34]  [11]LEE D, PARK J, HYUN D, et al. Novel mechanisms and simple locomotion strategies for an in??pipe robot that can inspect various pipe types [J]. Mechanism and Machine Theory, 2012, 56(1): 52??68.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133