全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

多端口进料微型管式重整制氢反应器性能研究
Research on the Performance of Multi??Inlet Micro??Tubular Reforming Reactor for Hydrogen Production

DOI: 10.7652/xjtuxb201711005

Keywords: 多端口进料,制氢,重整反应,反应器
multi??inlet feeding
,hydrogen production,reforming reaction,reactor

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统管式重整反应器甲烷转化率低的问题,设计了一种具有多端口进料结构的微型管式重整制氢反应器,并采用COMSOL多物理场模拟软件对该反应器的重整性能进行了计算研究,分析了反应温度、汽碳比等工作参数对其性能的影响规律。计算结果表明:当反应温度在773~973 K范围内变化时,甲烷转化率以及产物中H2、CO的摩尔分数会随反应温度升高而增大;当汽碳比在2~4范围内变化时,甲烷转化率随汽碳比增大而增大,而产物中H2、CO的摩尔分数则随着汽碳比的增大而减小;沿气体流动方向,甲烷转化率和产物中H2、CO的摩尔分数受进料多端口特征的影响呈锯齿状波动变化,并呈总体上升趋势,在反应器出口处达到最大值。将多端口进料结构反应器与传统管式反应器进行比较研究,发现所提出的新结构反应器分别在600~1 100 K的反应温度区间以及2~5汽碳比区间内其甲烷转化率都高于传统管式反应器;在873~973 K区间内甲烷转化率可达93%左右;当汽碳比增大到4后,继续增大汽碳比对甲烷转化率的提高已无明显作用,建议合理的汽碳比区间为3~4。
Considering the low methane conversion rate of traditional tubular reforming reactor, a multi??inlet micro??tubular reforming reactor for hydrogen production was designed in this paper, and the influences of operation parameters on the reforming performance were studied by COMSOL multiphysics software. The results indicated that the raise of reaction temperature from 773 K to 973 K would improve the methane conversion rate as well as H2 and CO mole fractions. With the increase of steam/carbon ratio from 2 to 4, the methane conversion rate is improved, while H2 and CO mole fractions are decreased. And also, the methane conversion rate and H2 and CO mole fractions present a sawtooth shape fluctuation, however showing an overall rising trend along the axis of the reactor and reach their maximum values at the outlet. In addition, compared the multi??inlet tubular reforming reactor with the traditional tubular reactor, a conclusion can be drawn that the methane conversion rate of present reactor is higher than the traditional tubular reactor when the reaction temperature varies from 600 K to 1 100 K, and the methane conversion rate reaches 93% in the range of 873??973 K. When the steam/carbon ratio changes from 2 to 5, the methane conversion rate of this reactor is higher than that of traditional tubular reactor. However the increase of steam/carbon ratio exhibits no significant effect on the improvement of methane conversion when the steam/carbon ratio is higher than 4. Thus, the optimal steam/carbon ratio is from 3 to 4

References

[1]  [2]U. S. Department of Energy. 2013 Fuel cell technologies market report [R]. Washington, USA: Department of Energy??Fuel Cell Technologies Office, 2014: 1??15.
[2]  [3]衣宝廉. 燃料电池原理、技术、应用 [M]. 北京: 化学工业出版社, 2003: 24??59.
[3]  [6]杨国刚, 岳丹婷, 袁金良. 甲烷重整器内部传递过程的数值模拟 [J]. 甲烷工业, 2008, 28(3): 121??123.
[4]  LI Wenbing, QI Zhiping. Progress on technical study for production of hydrogen from methane [J]. Nature Gas Industry, 2005, 25(2): 165??168.
[5]  [1]李文兵, 齐智平. 甲烷制氢技术研究进展 [J]. 甲烷工业, 2005, 25(2): 165??168.
[6]  [4]XU J, FROMENT G F. Methane steam reforming: diffusional limitations and reactor simulation [J]. AICHE, 1989, 35(1): 97??103.
[7]  [5]JAFFER H G. A multi??scale dynamic two??dimensional model for catalytic steam methane reforming reactors [J]. Hydrogen Energy, 2013, 38: 9984??9999.
[8]  [10]茹浩磊, 王家海. 固体氧化物燃料电池发电系统中重整器的设计与测试 [J]. 化学工程与装备, 2013, 9(9): 25??28.
[9]  RU Haolei, WANG Jiahai. The design of reformer in SOFC [J]. Chemical Engineering & Equipment, 2013, 9(9): 25??28.
[10]  [11]NAGATA S, MOMMA A, KATO T, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer [J]. Journal of Power Sources, 2001(101): 60??71.
[11]  [12]彭昂. kW级燃料电池热电联产系统中天然气重整制氢体系的研究 [D]. 广州: 华南理工大学, 2011: 7??46.
[12]  YANG Guogang, YUE Danting, YUAN Jinliang. Numerical simulation on inner??transfer process in natural gas reformer [J]. Nature Gas Industry, 2008, 28(3): 121??123.
[13]  [7]冯靓婧, 曹长青. 甲烷蒸汽催化重整制氢过程的数值模拟 [J]. 青岛科技大学学报(自然科学版), 2015, 36(1): 57??62.
[14]  FENG Liangjing, CAO Changqing. Numerical simulation of methane steam reforming for hydrogen Production [J]. Journal of Qingdao University of Science and Technology, 2015, 36(1): 57??62.
[15]  [8]GHANG T G, LEE S M. An experimental study on the reaction characteristics of a coupled reactor with a catalytic combustor and a steam reformer for SOFC systems [J]. Hydrogen Energy, 2012(37): 3234??3241.
[16]  [9]KANG Sanggyu, LEE Kanghun. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system [J]. Applied Energy, 2014(114): 114??123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133