全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

多个不可分辨目标群的联合检测与估计误差界
Error Bounds of Joint Detection and Estimation for Multiple Unresolved Target??Groups

DOI: 10.7652/xjtuxb201511015

Keywords: 误差界,不可分辨目标群,联合检测与估计,随机有限集
error bound
,unresolved target??group,joint detection and estimation,random finite set

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对杂波和漏检同时存在时多个不可分辨目标群联合检测与估计的性能评价问题,在随机有限集框架下,利用信息不等式和最优子模式分配距离提出了该问题的误差(下)界。首先将多个不可分辨目标群的状态建模为多Bernoulli随机有限集,并利用Mahler提出的连续个体目标数假设建模群目标测量似然函数;然后,结合最大后验概率检测和无偏估计准则获得了建议的误差界。仿真实验展示了该误差界随杂波密度和传感器检测概率的变化趋势,并利用不可分辨目标群势概率假设密度滤波器和不可分辨目标群势平衡多目标多Bernoulli滤波器对该误差界的有效性进行了验证。实验表明,利用该误差界可以对现有的不可分辨目标群联合检测与估计算法的性能进行有效衡量,使其在不同杂波密度和检测概率下的平均相对误差不超过7%。
Aiming at the performance evaluation of joint detection and estimation (JDE) for multiple unresolved target??groups in the presence of clutters and missed detections, an error (lower) bound is proposed using information inequality and optimal sub??pattern assignment distance within the random finite set (RFS) framework. Firstly, the states of multiple unresolved target??groups are modeled as a multi??Bernoulli RFS, and the group observation likelihood is modeled based on the assumption of the continuous individual target number proposed by Mahler. Then, the maximum posterior probability detection criteria and unbiased estimation criteria are used in deriving the proposed bound. Experimental results show that the proposed bound can effectively indicate the performance limits of JDE algorithms for the existing unresolved target??groups, and the average relative error is less than 7% for various clutter density and detection probability

References

[1]  [11]POOR V. An introduction to signal detection and estimation [M]. New York, USA: Springer, 1994.
[2]  [12]陈强, 李伟华, 吴婷, 等. 数值积分函数对超声波流量计精度的影响 [J]. 西安交通大学学报, 2012, 46(9): 21??25.
[3]  [4]ZHANG G H, LIAN F, HAN C Z. CBMeMber filters for nonstandard targets: IIunresolved targets [C]∥Proceedings of the 17th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2014: 1??8.
[4]  [7]TONG H S, ZHANG H, MENG H D, et al. The recursive form of error bounds for RFS state and observation with Pd<1 [J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2632??2646.
[5]  [2]MAHLER R. PHD filters for nonstandard targets: II unresolved targets [C]∥Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2009: 922??929.
[6]  [5]TICHAVSKY P, MURAVCHIK C, NEHORAI A. Posterior Cramér??Rao bounds for discrete time nonlinear filtering [J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1701??1722.
[7]  [6]REZAEIAN M, VO B N. Error bounds for joint detection and estimation of a single object with random finite set observation [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1943??1506.
[8]  [8]连峰, 马冬冬, 韩崇昭. 扩展目标联合检测与估计的误差界 [J]. 西安交通大学学报, 2014, 48(4): 8??14.
[9]  [10]WAXMANN M J, DRUMMOND O E. A bibliography of cluster (group) tracking [C]∥Proceedings of the Signal and Data Processing of Small Targets. Belingham, WA, USA: SPIE, 2004: 551??560.
[10]  CHEN Qiang, LI Weihua, WU Ting, et al. Influence of numerical integration on error of ultrasonic flowmeter [J]. Journal of Xi’an Jiaotong University, 2012, 46(9): 21??25.
[11]  [1]MAHLER R. Statistical multisource multitarget information fusion [M]. Norwood, MA, USA: Artech House, 2007.
[12]  [3]LIAN F, HAN C Z, LIU W F, et al. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets [J]. Signal Processing, 2012, 92(7): 1729??1744.
[13]  LIAN Feng, MA Dongdong, HAN Chongzhao. Error bound for joint detection and estimation for extended target [J]. Journal of Xi’an Jiaotong University, 2014, 48(4): 8??14.
[14]  [9]RISTIC B, VO B N, CLARK D, et al. A metric for performance evaluation of multi??target tracking algorithms [J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3452??3457.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133