全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

涡旋核心分布对斜置肋片蒸汽冷却通道换热特性的影响
Effect of Vortex Core Distribution on Heat Transfer Performance in Steam??Cooled Channels with Inclined Ribs

DOI: 10.7652/xjtuxb201505002

Keywords: 数值模拟,带肋通道,涡旋结构,换热特性
numerical simulation
,ribbed channel,structure of vortex,heat transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值计算了宽高比为2∶1,雷诺数为1×104~6×104,肋角度分别为30°、60°、90°时蒸汽冷却带肋通道,采用流场涡旋核心显示技术分析了各肋角度下带肋通道涡旋的产生、演变过程、形态变化以及分布规律,研究了涡旋分布规律对通道换热系数的影响。结果表明:肋角度对带肋通道涡旋形态和分布规律有较大影响,90°通道主要由横向涡组成,30°、60°通道主要由纵向涡和主涡组成;纵向涡的换热特性比横向涡更好,30°、60°通道平均换热系数比90°通道高;30°通道纵向涡的分支以及流体的黏性耗散会导致纵向涡涡旋强度和尺度减小、纵向涡的换热性能削弱,这使得30°通道平均换热系数比未发生纵向涡分支的60°通道低;相对于边界层的距离、涡旋半径,涡旋强度、涡旋核心是影响涡旋强化换热的更重要的参数。该结果可为主动控制带肋通道涡旋强化换热研究提供参考。
The steam??cooled channels with rib angles of 30°, 60° and 90°, ducts aspect ratio 2∶1 and Reynolds number ranging from 1×104 to 6×104 are numerically simulated. The vortex generation, evolution, morphological changes and its distribution are numerically analyzed with flow field vortex core technology and the effect of vortex distribution of ribbed channels on heat transfer performance are also investigated. The result indicates that morphology and distribution of vortex in ribbed channels strongly depend upon the rib angles. In 90° channels transverse vortex dominates, and in 30° and 60° channels longitudinal vortex and main vortex do; the average heat transfer coefficient in 30° and 60° channels is higher than that in 90° channel because of better heat transfer performance of longitudinal vortex than that of transverse vortex; the average heat transfer coefficient in 30° channel is lower than in 60° channel without bifurcated longitudinal vortex because the bifurcated longitudinal vortex in 30° channel and viscous dissipation of fluid result in the decreased strength and scale of the longitudinal vortex to weaken the heat transfer performance; the vortex strength, vortex core location relative to boundary layer and radius of vortex are all the important parameters for vortex heat transfer performance

References

[1]  SHI Xiaojun, SHUI Liqi, GAO Jianming, et al. Heat transfer and pressure drop correlations for rectangular channels with ribs [J]. Journal of Xi’an Jiaotong University, 2013, 47(11): 1??6.
[2]  [12]ZHU Jiangnan, GAO Tieyu, LI Jun, et al. The effect of vortex core distribution on heat transfer in steam cooling of gas turbine blade internal ribbed channels, 2014??GT2014??25324 [R]. New York, USA: ASME, 2014.
[3]  [18]FIEBIG M. Vortices, generators and heat transfer [J]. Transactions of IChemE: Part A, 1998, 76(2): 108??123.
[4]  [5]阚瑞, 陈伟, 任静, 等. 梯形带肋内部冷却通道流动及传热特性 [J]. 工程热物理学报, 2010, 31(5): 753??756.
[5]  KAN Rui, CHEN Wei, REN Jing, et al. Aero??thermo dynamical characteristics in a ribbed trapezoidal internal cooling system [J]. Journal of Engineering Thermophysics, 2010, 31(5): 753??756.
[6]  [1]PARK J S, HAN J C, HUANG Y, et al. Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs [J]. International Journal of Heat and Mass Transfer, 1992, 35(11): 2891??2903.
[7]  [6]LIU Jiazeng, GAO Jianming, GAO Tieyu. An experimental investigation of heat transfer characteristics in steam??cooled square channel with rib turbulators, 2011??GT2011??46134 [R]. New York, USA: ASME, 2011.
[8]  [7]SHUI Linqi, GAO Jianming, XU Liang, et al. Numerical investigation of heat transfer and flow characteristics in a steam??cooled square ribbed duct, 2010??GT2010??22407 [R]. New York, USA: ASME, 2010.
[9]  [8]史晓军, 税琳棋, 高建民, 等. 蒸汽冷却带肋矩形通道传热和压降实验关联式 [J]. 西安交通大学学报, 2013, 47(11): 1??6.
[10]  [11]HAN J C, PARK J S. Developing heat transfer in rectangular channels with rib turbulators [J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 183??195.
[11]  [2]HAN J C, PARK J S. Heat transfer and friction characteristics in rectangular channels with rib turbulators [J]. Journal of Heat Transfer, 1988, 110(2): 321??328.
[12]  [3]HAN J C, OU S, PARK J S, et al. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators [J]. International Journal of Heat and Mass Transfer, 1989, 32(9): 1619??1630.
[13]  [4]杨力, 阚瑞, 任静, 等. 带气膜孔内部冷却通道的流动与传热特性 [J]. 工程热物理学报, 2011, 32(8): 1385??1388.
[14]  YANG Li, KAN Rui, REN Jing, et al. Aero??and thermodynamic features of the flow fields in the internal cooling channels with film cooling holes [J]. Journal of Engineering Thermophysics, 2011, 32(8): 1385??1388.
[15]  [9]SHUI Linqi, GAO Jianming, SHI Xiaojun, et al. The effect of cooling conditions on convective heat transfer and flow in a steam??cooled ribbed duct [J]. Journal of Mechanical Science and Technology, 2014, 28(1): 331??341. [10]LIU Jiazeng, GAO Jianming, GAO Tieyu, et al. Heat transfer characteristics in steam??cooled rectangular channels with two opposite rib??roughened walls [J]. Applied Thermal Engineering, 2013, 50(1): 104??111.
[16]  [13]SHI Xiaojun, GAO Jianming, XU Liang, et al. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles [J]. Heat Mass Transfer, 2013, 49(11): 1577??1586.
[17]  [14]JEONG J, HUSSAIN F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285(1): 69??94.
[18]  [15]SCHAFHITZEL T, VOLLRATH J E, WEISKOPF D, et al. Topology??preserving λ2??based vortex core line detection for flow visualization [C]∥IEEE??VGTC Symposium on Visualization. Piscataway, NJ, USA: IEEE, 2008: 1023??1030.
[19]  [16]KLINE S J, MCCLINTOCK F. Describing uncertainties in single??sample experiments [J]. Mechanical Engineering, 1953 (75): 3??8.
[20]  [17]GENTRY M C, JACOBI A M. Heat transfer enhancement by delta??wing vortex generators on a flat plate vortex interactions with the boundary layer [J]. Experimental Thermal and Fluid Science, 1997, 14(3): 231??242.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133