|
- 2015
动理论在预测非阻塞性颗粒阻尼能量耗散中的应用
|
Abstract:
为了准确分析颗粒阻尼(NOPD)的能量耗散机理,拓宽颗粒阻尼在工程中的应用范围,根据分子动理论基本原理,建立非阻塞性颗粒阻尼能量耗散的定量模型。在振动流化床颗粒系统研究成果的基础上,认为当阻尼器内部的颗粒充分流化时,颗粒之间的物质输运和能量耗散由颗粒之间的碰撞主导;将阻尼器内部颗粒的运动与气体分子的运动进行类比,建立非阻塞性颗粒阻尼的能量守恒方程;通过求解颗粒系统的广义温度,得到非阻塞性颗粒阻尼能量耗散功率的定量模型。研究结果表明,颗粒阻尼的能量耗散功率随着颗粒直径的增大、颗粒层数的增多、材料密度的增加以及振动强度的提高逐渐提高。与现有模型相比,提出的模型颗粒阻尼的能量耗散功率不依赖颗粒内部速度梯度,因而具有更大的实际应用范围,也为更精确地描述非阻塞性颗粒阻尼的能量耗散机理提供了一种新的思路。
To investigate energy dissipation mechanism of non??obstructive particle damping (NOPD) accurately, the kinetic theory is employed to establish a quantitative analysis model. When the particles of NOPD are uniformly fluidized, the mass transport and energy exchange are dominated by the collisions among the particles. Solving the energy conservation equation of the NOPD, the temperature and the energy dissipation power of NOPD are obtained. The theoretical results show that NOPD energy dissipation power rises with the increasing particle diameter, layer number, material density and vibration amplitude. Compared with the previous analysis models of NOPD, the proposed model does not depend on the velocity gradient of particles, which widens the practical applications, and provides a new way to revealing energy dissipation mechanism of NOPD
[1] | [19]MCNAMARA S, BARRAT J L. Energy flux into a fluidized granular medium at a vibrating wall [J]. Physical Review: E, 1997, 55(6): 7767??7771. |
[2] | [4]PANOSSIAN H V. Structural damping enhancement via non??obstructive particle damping technique [J]. Journal of Vibration and Acoustics, 1992, 114(1): 101??105. |
[3] | [7]张超, 陈天宁, 王小鹏, 等. 颗粒阻尼线性离散元模型参数的选取方法 [J]. 西安交通大学学报, 2014, 48(3): 96??101. |
[4] | [8]VALANIS K C, FAN J. A numerical algorithm for endochronic plasticity and comparison with experiment [J]. Computers & Structures, 1984, 19 (5): 717??724. |
[5] | [9]王炜, 黄协清, 陈天宁. 基于内蕴时间理论极值特性的 NOPD 结构的响应仿真 [J]. 系统仿真学报, 2003, 15(6): 849??851. |
[6] | WANG Wei, HUANG Xieqing, CHEN Tianning. Response simulation of non??obstructive particle damping structure based on extremal properties of endochronic theory [J]. Journal of System Simulation, 2003, 15(6): 849??851. |
[7] | [15]CHEPURNIY N. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field [J]. Journal of Fluid Mechanics, 1984, 140(222/223): 223??256. |
[8] | [16]SAVAGE S B, SAYED M. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell [J]. Journal of Fluid Mechanics, 1984, 142: 391??430. |
[9] | [17]JENKINS J T, SAVAGE S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles [J]. Journal of Fluid Mechanics, 1983, 130: 187??202. |
[10] | [18]MCNAMARA S, LUDING S. Energy nonequipartition in systems of inelastic, rough spheres [J]. Physical Review: E, 1998, 58(2): 2247??2251. |
[11] | ZHANG Chao, CHEN Tianning, WANG Xiaopeng, et al. Parameter selection method for linear discrete element modal of particle damper [J]. Journal of Xi’an Jiaotong University, 2014, 48(3): 96??101. |
[12] | [10]崔致远, 吴九汇, 陈花玲, 等. 基于统计方法的 NOPD 耗能机理定量分析 [J]. 振动与冲击, 2012, 31(9): 135??139. |
[13] | [2]BAI X M, SHAH B, KEER L M, et al. Particle dynamics simulations of a piston??based particle damper [J]. Powder Technology, 2009, 189(1): 115??125. |
[14] | [3]BAI X M, KEER L M, WANG Q J, et al. Investigation of particle damping mechanism via particle dynamics simulations [J]. Granular Matter, 2009, 11(6): 417??429. |
[15] | CUI Zhiyuan, WU Jiuhui, CHEN Hualing, et al. Quantitative analysis on energy dissipation mechanism of non??obstructive particle damping technology [J]. Journal of Vibration and Shock, 2012, 31(9): 135??139. |
[16] | [11]WU C J, LIAO W H, WANG M Y. Modeling of granular particle damping using multiphase flow theory of gas??particle [J]. Journal of Vibration and Acoustics, 2004, 126(2): 196??201. |
[17] | [12]MCNAMARA S, LUDING S. Energy flows in vibrated granular media [J]. Physical Review: E, 1998, 58(1): 813??823. |
[18] | [13]KUNAMARA V. Kinetic theory for a vibro??fluidized bed [J]. Journal of Fluid Mechanics, 1998, 364: 163??185. |
[19] | [14]CULICK F E C. Boltzmann equation applied to a problem of two??phase flow [J]. Physics of Fluids (1958??1988), 1964, 7(12): 1898??1904. |
[20] | [1]PANOSSIAN H. Non??obstructive impact damping applications for cryogenic environments [C]∥Proceedings of Damping’89. West Palm Beach, Florida, USA: NTIS, 1989: 1??9. |
[21] | [5]PANOSSIAN H V, EHRGOTT R. Non??obstructive particle damping (NOPD) treatment optimization for composite honeycomb panels [C]∥Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. New York, USA: ASME, 2007: 2047??2057. |
[22] | [6]CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems [C]∥Proc Symp Rock Fracture (ISRM). Wroclaw, Poland: ISRM, 2013: 1??8. |