全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进量子粒子群算法的微循环结构自调节模型参数优化研究

DOI: doi:10.7507/1001-5515.201607030

Keywords: 微循环, 结构自调节, 量子粒子群优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

微循环血管不断地调节自身结构,以适应组织的功能性需求。微循环结构自调节模型能够仿真这一过程,为生理研究提供辅助,但目前缺少合适的模型参数设置方法,限制了模型的进一步应用。本文提出一种改进的量子粒子群优化算法用于设置模型参数,并在真实的大鼠肠系膜微循环血管网络上进行仿真实验。仿真结果表明,该方法的参数优化能力优于标准粒子群算法、标准量子粒子群算法和相关文献报道的 Downhill 算法,可使微循环结构自调节模型的仿真更接近动物实验数据,并显著提高模型的有效性

References

[1]  2. Levy B I, Ambrosio G, Pries A R, et al. Microcirculation in hypertension: a new target for treatment? Circulation, 2001, 104(6): 735-740.
[2]  3. Struijker-Boudier H A J, Rosei A E, Bruneval P, et al. Evaluation of the microcirculation in hypertension and cardiovascular disease. Eur Heart J, 2007, 28(23): 2834-2840.
[3]  4. Pries A R, Habazettl H, Ambrosio G, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res, 2008, 80(2): 165-174.
[4]  6. Pan Q, Wang R F, Reglin B, et al. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. J Biomech Eng-Trans ASME, 2014, 136(1): 011009.
[5]  7. Carlson B E, Arciero J C, Secomb T W. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol, 2008, 295(4): H1572-H1579.
[6]  8. Cornelissen A J M, Dankelman J, Vanbavel E, et al. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol, 2002, 282(6): H2224-H2237.
[7]  9. Pries A R, Reglin B, Secomb T W. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol, 2001, 281(3): H1015-H1025.
[8]  10. Pries A R, H?pfner M, le Noble F, et al. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer, 2010, 10(8): 587-593.
[9]  12. Sun J, Fang W, Wu X, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol Comput, 2012, 20(3): 349-393.
[10]  14. Pan Q, Wang R, Reglin B, et al. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization. Bio-Med Mater Eng, 2014, 24(6): 2341-2347.
[11]  16. Pries A R, Secomb T W, Gaehtgens P. Design principles of vascular beds. Circ Res, 1995, 77(5): 1017-1023.
[12]  1. Risau W. Mechanisms of angiogenesis. Nature, 1997, 386(6626): 671-674.
[13]  5. Ganesan P, He S, Xu H. Modelling of pulsatile blood flow in arterial trees of retinal vasculature. Med Eng Phys, 2011, 33(7): 810-823.
[14]  11. Vorderwülbecke B J, Maroski J, Fiedorowicz K, et al. Regulation of endothelial connexin40 expression by shear stress. Am J Physiol Heart Circ Physiol, 2012, 302(1): H143-H152.
[15]  13. Pries A R, Secomb T W, Gessner T, et al. Resistance to blood flow in microvessels in vivo. Circ Res, 1994, 75(5): 904-915.
[16]  15. Pries A R, Secomb T W. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol, 2005, 289(6): H2657-H2664.
[17]  17. Meens M J, Pfenniger A, Kwak B R, et al. Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res, 2013, 99(2): 304-314.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133