全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于体表心音的左心室血压预测方法研究

DOI: doi:10.7507/1001-5515.201606068

Keywords: 心音特征, 左心室血压, 血压预测, 人工神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以心音特征为基础,实现了连续的左心室收缩压预测。通过对 3 只比格犬进行实验,以肾上腺素诱发心脏血流动力学发生变化,然后同步采集实验犬的心音、心电、左心室血压等信号,共获取了 28 组有效数据。通过提取心音特征,借助人工神经网络实现了反推左心室收缩血压,获得了较好的预测效果。本研究在较大的血压动态变化范围内,得到了绝对误差均值仅为 7.3 mm Hg、预测血压与测量血压的平均相关系数为 0.92 的实验结果。研究结果显示,本文所述方法有助于实现无创的左心室血流动力的连续监测

References

[1]  10. Ozcan G H, Bahadirlar Y. Estimation of systolic blood pressure from the second heart sounds//Proceedings of the 1998 2nd International Conference, 1998.
[2]  11. Hoon Lim K, Duck Shin Y, Hi Park S, et al. Correlation of blood pressure and the ratio of S1 to S2 as measured by esophageal stethoscope and wireless bluetooth transmission. Pak J Med Sci, 2013, 29(4): 1023-1027.
[3]  12. Zhang X Y, Zhang Y T. A model-based study of relationship between timing of second heart sound and systolic blood pressure//28th Annual International Conference of the IEEE, 2006.
[4]  13. Zhang Xinyu, Macpherson E, Zhang Yuanting. Relations between the timing of the second heart sound and aortic blood pressure. IEEE Trans Biomed Eng, 2008, 55(4): 1291-1297.
[5]  14. Wong M Y, Zhang X Y, Zhang Y T. The cuffless arterial blood pressure estimation based on the timing-characteristics of second heart sound//28th Annual International Conference of the IEEE, 2006.
[6]  15. Wong M Y, Poon C C, Zhang Y T. Can The timing-characteristics of phonocardiographic signal be used for cuffless systolic blood pressure estimation?//28th Annual International Conference of the IEEE, 2006.
[7]  16. Peng Rongchao, Yan Wenrong, Zhang Ningling, et al. Cuffless and continuous blood pressure estimation from the heart sound signals. Sensors (Basel), 2015, 15(9): 23653-23666.
[8]  17. WHO. Global status report on noncommunicable diseases 2014. World Self-Medication Industry, 2015.
[9]  18. American P A. Guidelines for ethical conduct in the care and use of animals. J Exp Anal Behav, 1986, 45(2): 127-132.
[10]  19. Liang H, Lukkarinen S, Hartimo L. Heart sound segmentation algorithm based on heart sound envelogram. Comput Cardio, 1997, 24(24): 105-108.
[11]  20. Leng Shuang, Tan Rusan, Chai K T, et al. The electronic stethoscope. Biomed Eng Online, 2015, 14: 66.
[12]  21. Castro A, Mattos S S, Coimbra M T. Noninvasive blood pressure and the second heart sound analysis//2014 36th Annual International Conference of The Ieee Engineering In Medicine and Biology Society (Embc), 2014: 5494-5497.
[13]  22. Rumelhart D E, Hinton G E, Williams R J. Learning repre-sentations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
[14]  23. U?uz H. A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J Med Syst, 2012, 36(1): 61-72.
[15]  24. Jain L C, Seera M, Lim C P, et al. A review of online learning in supervised neural networks. Neural Comput Appl, 2014, 25(3/4): 491-509.
[16]  25. 赵建华. 一种基于交叉验证思想的半监督分类方法. 西南科技大学学报, 2014(1): 34-38.
[17]  1. Cobra S D, Cardoso R M, Rodrigues M P. Usefulness of the second heart sound for predicting pulmonary hypertension in patients with interstitial lung disease. Sao Paulo Med J, 2016, 134(1): 34-39.
[18]  2. Elgendi M, Bobhate P, Jain S, et al. The unique heart sound signature of children with pulmonary artery hypertension. Pulm Circ, 2015, 5(4): 631-639.
[19]  3. Zheng Yineng, Guo Xingming, Qin Jian, et al. Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Methods Programs Biomed, 2015, 122(3): 372-383.
[20]  4. Redlarski G, Gradolewski D, Palkowski A. A system for heart sounds classification. PLoS One, 2014, 9(11): e112673.
[21]  5. Tranulis C, Durand L G, Senhadji L, et al. Estimation of pulmonary arterial pressure by a neural network analysis using features based on time-frequency representations of the second heart sound. Med Biol Eng Comput, 2002, 40(2): 205-212.
[22]  6. Sakamoto T, Kusukawa R, Maccanon D M, et al. Hemodynamic Determinants of The Amplitude of The First Heart Sound. Circ Res, 1965, 16(1): 45-57.
[23]  7. Blick E F, Sabbah H N, Stein P D. One-dimensional model of diastolic semilunar valve vibrations productive of heart sounds. J Biomech, 1979, 12(3): 223-227.
[24]  8. Sikarskie D L, Stein P D, Vable M. A mathematical model of aortic valve vibration. J Biomech, 1984, 17(11): 831-837.
[25]  9. Zhang X Y, Zhang Y T. Model-based analysis of effects of systolic blood pressure on frequency characteristics of the second heart sound//28th Annual International Conference of the IEEE, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133