全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

miRNA与骨关节炎软骨基质降解的研究进展

DOI: doi:10.7507/1002-1892.20160295

Keywords: miRNA, 骨关节炎, 软骨, 基质降解

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对miRNA与骨关节炎(osteoarthritis,OA)软骨基质降解的研究进展进行综述。 方法查阅国内外有关miRNA与OA软骨基质降解的文献,对其进行总结分析。 结果OA是一类常见的以软骨退行性病变为主要特征的慢性关节性疾病,其病因和发病机制尚不明确。miRNA是一种非蛋白编码小分子RNA,与OA软骨基质降解过程中的炎性介质及各种细胞因子密切相关,在细胞和分子水平调控软骨细胞基因表达中发挥重要作用。 结论miRNA可作为潜在分子靶标,为OA临床诊断和治疗提供新的方向

References

[1]  2. Vicente R, Noel D, Pers YM, et al. Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol, 2016, 12(4): 211-220.
[2]  3. Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease. Curr Osteoporos Rep, 2014, 12(4): 410-419.
[3]  10. Liu SC, Chuang SM, Hsu CJ, et al. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression. Cell Death Dis, 2014, 5: e1485.
[4]  11. Borgonio Cuadra VM, González-Huerta NC, Romero-Cordoba S, et al. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One, 2014, 9(6): e97690.
[5]  12. Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis, 2015, 74(3): e18.
[6]  13. Jingsheng S, Yibing W, Jun X, et al. MicroRNAs are potential prognostic and therapeutic targets in diabetic osteoarthritis. J Bone Miner Metab, 2015, 33(1): 1-8.
[7]  15. Li YH, Tavallaee G, Tokar T, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early-and late-stage knee osteoarthritis. Osteoarthritis Cartilage, 2016, 24(9): 1577-1586.
[8]  16. Prasadam I, Batra J, Perry S, et al. Systematic identification, characterization and target gene analysis of microRNAs involved in osteoarthritis subchondral bone pathogenesis. Calcif Tissue Int, 2016, 99(1): 43-55.
[9]  17. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014, 15(8): 509-524.
[10]  18. Ghasemi A, Fallah S, Ansari M. MiR-153 as a tumor suppressor in glioblastoma multiforme is downregulated by DNA methylation. Clin Lab, 2016, 62(4): 573-580.
[11]  19. Swierczynski S, Klieser E, Illig R, et al. Histone deacetylation meets miRNA: epigenetics and post-transcriptional regulation in cancer and chronic diseases. Expert Opin Biol Ther, 2015, 15(5): 651-664.
[12]  24. Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene, 2010, 29(15): 2161-2164.
[13]  25. Carroll AP, Goodall GJ, Liu B. Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdiscip Rev RNA, 2014, 5(3): 361-379.
[14]  27. Sharma AR, Sharma G, Lee SS, et al. miRNA-regulated key components of cytokine signaling pathways and inflammation in rheumatoid arthritis. Med Res Rev, 2016, 36(3): 425-439.
[15]  28. Afonso-Grunz F, Müller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci, 2015, 72(16): 3127-3141.
[16]  31. Imig J, Brunschweiger A, Brummer A, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol, 2015, 11(2): 107-114.
[17]  34. Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707.
[18]  35. Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PloS One, 2008, 3(11): e3740.
[19]  37. Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum, 2010, 62(5): 1361-1371.
[20]  39. Vonk LA, Kragten AH, Dhert WJ, et al. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage, 2014, 22(1): 145-153.
[21]  40. Santini P, Politi L, Vedova PD, et al. The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol Int, 2014, 34(5): 711-716.
[22]  42. Song J, Kim D, Lee CH, et al. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J Biomed Sci, 2013, 20: 31.
[23]  45. Li L, Jia J, Liu X, et al. MicroRNA-16-5p Controls Development of Osteoarthritis by Targeting SMAD3 in Chondrocytes. Curr Pharm Des, 2015, 21(35): 5160-5167.
[24]  56. Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem, 2012, 287(2): 916-924.
[25]  57. Rossato M, Curtale G, Tamassia N, et al. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A, 2012, 109(45): E3101-3110.
[26]  59. Wang X, Guo Y, Wang C, et al. MicroRNA-142-3p Inhibits Chondrocyte Apoptosis and Inflammation in Osteoarthritis by Targeting HMGB1. Inflammation, 2016, 39(5): 1718-1728.
[27]  60. Li J, Huang J, Dai L, et al. miR-146a, an IL-1? responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther, 2012, 14(2): R75.
[28]  6. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage, 2009, 17(4): 464-472.
[29]  9. Li YP, Wei XC, Li PC, et al. The Role of miRNAs in Cartilage Homeostasis. Curr Genomics, 2015, 16(6): 393-404.
[30]  29. Oulas A, Karathanasis N, Louloupi A, et al. Prediction of miRNA targets. Methods Mol Biol, 2015, 1269: 207-229.
[31]  32. Moore MJ, Scheel TK, Luna JM, et al. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity. Nat Commun, 2015, 6: 8864.
[32]  33. Zhao J, Luo R, Xu X, et al. High-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation (HITS-CLIP) reveals Argonaute-associated microRNAs and targets in Schistosoma japonicum. Parasit Vectors, 2015, 8: 589.
[33]  38. Ji Q, Xu X, Xu Y, et al. miR-105/Runx2 axis mediates FGF2-induced ADAMTS expression in osteoarthritis cartilage. J Mol Med (Berl), 2016, 94(6): 681-694.
[34]  41. Li Z, Meng D, Li G, et al. Overexpression of microRNA-210 promotes chondrocyte proliferation and extracellular matrix deposition by targeting HIF-3α in osteoarthritis. Mol Med Rep, 2016, 13(3): 2769-2776.
[35]  43. Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes. Osteoarthritis Cartilage, 2013, 21(7): 981-989.
[36]  66. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A, 2006, 103(33): 12481-12486.
[37]  67. Trenkmann M, Brock M, Gay RE, et al. Tumor necrosis factor α-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arthritis Rheum, 2013, 65(4): 916-927.
[38]  1. Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage, 2016, 24(4): 573-580.
[39]  4. Ji Q, Xu X, Zhang Q, et al. The IL-1beta/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med (Berl), 2016, 94(7): 771-785.
[40]  5. Rasheed Z, Al-Shobaili HA, Rasheed N, et al. Integrated study of globally expressed microRNAs in IL-1beta-stimulated human osteoarthritis chondrocytes and osteoarthritis relevant genes: a microarray and bioinformatics analysis. Nucleosides Nucleotides Nucleic Acids, 2016, 35(7): 335-355.
[41]  7. Li ZC, Han N, Li X, et al. Decreased expression of microRNA-130a correlates with TNF-α in the development of osteoarthritis. Int J Clin Exp Pathol, 2015, 8(3): 2555-2564.
[42]  8. Tardif G, Pelletier JP, Fahmi H, et al. NFAT3 and TGF-?/SMAD3 regulate the expression of miR-140 in osteoarthritis. Arthritis Res Ther, 2013, 15(6): R197.
[43]  14. Weilner S, Grillari-Voglauer R, Redl H, et al. The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone. Acta Orthop, 2015, 86(1): 92-99.
[44]  20. Poddar S, Kesharwani D, Datta M. Histone deacetylase inhibition regulates miR-449a levels in skeletal muscle cells. Epigenetics, 2016, 11(8): 579-587.
[45]  21. Wang Y, Hu X, Greshock J, et al. Genomic DNA copy-number alterations of the let-7 family in human cancers. PLoS One, 2012, 7(9): e44399.
[46]  22. Liu X, Chen X, Yu X, et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res, 2013, 32: 96.
[47]  23. Xi Y, Shalgi R, Fodstad O, et al. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res, 2006, 12(7 Pt 1): 2014-2024.
[48]  26. Moore AC, Winkjer JS, Tseng TT. Bioinformatics resources for MicroRNA discovery. Biomark Insights, 2015, 10(Suppl 4): 53-58.
[49]  30. Kunz M, Xiao K, Liang C, et al. Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol, 2015, 89(Pt A): 3-10.
[50]  44. Cui X, Wang S, Cai H, et al. Overexpression of microRNA-634 suppresses survival and matrix synthesis of human osteoarthritis chondrocytes by targeting PIK3R1. Sci Rep, 2016, 6: 23117.
[51]  47. Kostopoulou F, Malizos KN, Papathanasiou I, et al. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes. Arthritis Res Ther, 2015, 17: 42.
[52]  48. Yang B, Kang X, Xing Y, et al. Effect of microRNA-145 on IL-1?-induced cartilage degradation in human chondrocytes. FEBS Lett, 2014, 588(14): 2344-2352.
[53]  50. Zhang Z, Leong DJ, Xu L, et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther, 2016, 18(1):128.
[54]  51. Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum, 2009, 60(9): 2723-2730.
[55]  52. Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev, 2010, 24(11): 1173-1185.
[56]  53. Liang Y, Duan L, Xiong J, et al. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther, 2016, 18(1): 105.
[57]  36. Díaz-Prado S, Cicione C, Mui?os-López E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord, 2012, 13: 144.
[58]  54. Abouheif MM, Nakasa T, Shibuya H, et al. Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford), 2010, 49(11): 2054-2060.
[59]  55. Dai L, Zhang X, Hu X, et al. Silencing of microRNA-101 prevents IL-1?-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther, 2012, 14(6): R268.
[60]  46. Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med, 2014, 46: e79.
[61]  49. Kauffman HF, van der Heide S, van der Laan S, et al. Standardization of allergenic extracts of Aspergillus fumigatus. Liberation of IgE-binding components during cultivation. Int Arch Allergy Appl Immunol, 1985, 76(2): 168-173.
[62]  58. Tian GP, Chen WJ, He PP, et al. MicroRNA-467b targets LPL gene in RAW264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie, 2012, 94(12): 2749-2755.
[63]  61. Hou C, Yang Z, Kang Y, et al. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway. FEBS Lett, 2015, 589(9): 1040-1047.
[64]  62. Zhong N, Sun J, Min Z, et al. MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression. Osteoarthritis Cartilage, 2012, 20(6): 593-602.
[65]  63. Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2012, 64(6): 1909-1919.
[66]  64. Akhtar N, Makki MS, Haqqi TM. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes. Arthritis Rheumatol, 2015, 67(2): 423-434.
[67]  65. Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med, 2009, 15(12): 1421-1425.
[68]  68. Hu F, Zhu W, Wang L. MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol, 2013, 58(2): 192-199.
[69]  69. Okuhara A, Nakasa T, Shibuya H, et al. Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod Rheumatol, 2012, 22(3): 446-457.
[70]  70. Nagata Y, Nakasa T, Mochizuki Y, et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis Rheum, 2009, 60(9): 2677-2683.
[71]  71. Mariner PD, Johannesen E, Anseth KS. Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. J Tissue Eng Regen Med, 2012, 6(4): 314-324.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133