11. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep, 2011, 9(2) :46-52.
25. Lord-Dufour S, Copland IB, Levros LC Jr, et al. Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha:Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells, 2009, 27(3) :489-497.
[9]
29. Hill P, Shukla D, Tran MG, et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemiareperfusion injury. J Am Soc Nephrol, 2008, 19(1) :39-46.
34. Peng J, Lai ZG, Fang ZL, et al. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One, 2014, 9(11) :e112744.
38. Hou Z, Nie C, Si Z, et al. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia. Diabetes Res Clin Prac, 2013, 101(1) :62-71.
[15]
42. Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials, 2012, 33(7) :2076-2085.
[16]
43. Quinlan E, Partap S, Azevedo MM, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52:358-366.
[17]
44. Wu C, Zhou Y, Chang J, et al. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater, 2013, 9(11) :9159-9168.
46. Ding H, Gao YS, Hu C, et al. HIF-1α transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS One, 2013, 8(5) :e63628.
[20]
48. Zou D, Zhang Z, He J, et al. Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1α and a phosphate cement scaffold. Biomaterials, 2011, 32(36) :9707-9718.
[21]
49. Li C, Liu D, Zhang Z, et al. Triple point-mutants of hypoxia-inducible factor-1α accelerate in vivo angiogenesis in bone defect regions. Cell Biochem Biophys, 2013, 67(2) :557-566.
4. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev, 2013, 27(1) :41-53.
[25]
5. Hong WX, Hu MS, Esquivel M, et al. The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle), 2014, 3(5) :390-399.
[26]
6. Niyaz M, Gürp?nar ?A, Oktar GL, et al. Effect of VEGF and MSCs on vascular regeneration in a trauma model in rats. Wound Repair Regen, 2015, 23(2) :262-267.
[27]
9. Bluteau G, Julien M, Magne D, et al. VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone, 2007, 40(3) :568-576.
[28]
10. Carmeliet P. Angiogenesis in health and disease. Nat Med, 2003, 9(6) :653-660.
17. Riddle RC, Khatri R, Schipani E, et al. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med (Berl), 2009, 87(6) :583-590.
[32]
18. Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell, 2012, 149(1) :63-74.
27. Liu J, Hao H, Huang H, et al. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds, 2015, 14(1) :63-72.
[36]
28. Yew TL, Huang TF, Ma HL, et al. Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model. J Orthop Res, 2012, 30(8) :1213-1220.
56. Lu Y, Jeong YT, Li X, et al. Emodin isolated from polygoni cuspidati radix inhibits TNF-α and IL-6 release by blockading NF-κB and MAP kinase pathways in mast cells stimulated with PMA Plus A23187. Biomol Ther (Seoul), 2013, 21(6) :435-441.
[42]
1. 黄姣. 低氧微环境对骨髓间充质干细胞成骨分化影响的研究. 重庆:重庆医科大学, 2012.
[43]
2. Semenza GL. Hypoxia-Inducible factors in physiology and medicine. Cell, 2012, 148(3) :399-408.
8. Han Y, Kuang SZ, Gomer A, et al. Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner. Stem Cells, 2010, 28(4) :799-809.
30. Eckle T, K?hler D, Lehmann R, et al. Hypoxia-inducible factor-1 is central to cardioprotection:a new paradigm for ischemic preconditioning. Circulation, 2008, 118(2) :166-175.
[50]
31. Cummins EP, Seeballuck F, Keely SJ, et al. Th hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology, 2008, 134(1) :156-165.
[51]
32. Safran M, Kim WY, O'Connell F, et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity:assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A, 2006, 103(1) :105-110.
[52]
40. Azevedo MM, Jell G, O'Donnell MD, et al. Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem, 2010, 20(40) :8854-8864.
[53]
41. Azevedo MM, Tsigkou O, Nair R, et al. Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. Tissue Eng Part A, 2015, 21(1-2) :382-389.
50. Rios CN, Skoracki RJ, Mathur AB. GNAS1 and PHD2 short-interfering RNA support bone regeneration in vitro and in an in vivo sheep model. Clin Orthop Relat Res, 2012, 470(9) :2541-2553.