全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于感压纸材料的小型猪上胸椎生物力学试验研究

DOI: doi:10.7507/1002-1892.20160201

Keywords: 脊柱侧弯, 上胸椎, 生物力学, 感压材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的比较小型猪上胸椎各节段椎间盘在垂直受压以及5°前屈、后伸、侧弯时椎间盘的压强变化及分布特点。 方法取12具小型猪脊柱标本,分为两组(n=6),一组截取T1、2、T3、4、T5、6、T7、8节段椎间盘,另一组截取T2、3、T4、5、T6、7、T8、9节段椎间盘,两组合并即为完整上胸椎数据。应用生物力学试验机及LLW双面型感压纸对各节段椎间盘依次行100、150、200 N载荷,测量垂直载荷以及5°前屈、后伸及侧弯时压强,分析不同载荷及运动条件下各上胸椎椎间盘的压强变化特点。 结果与垂直载荷相比,前屈时上胸椎各节段前方纤维环压强呈增大趋势(P<0.05),而后方纤维环压强部分节段无明显改变(P>0.05)或呈增大趋势(P<0.05);后伸时上胸椎各节段前方纤维环压强呈减小趋势(P<0.05),而后方纤维环压强部分节段呈减小趋势(P<0.05)或无明显变化(P>0.05);侧弯时,随载荷增大各节段侧弯凹侧纤维环压强均明显增加(P<0.05)。 结论各上胸椎椎间盘的压强分布在不同载荷下具有不同特点,椎体的后侧结构在上胸椎活动及压强分布中起重要作用。上胸椎侧弯时凹侧压强明显增大,表明受力不对称可能是脊柱侧弯进展的重要原因之一;个体体质量是影响脊柱侧弯进展的重要因素

References

[1]  11. Liau JJ, Cheng CK, Huang CH, et al. Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clin Biomech (Bristol, Avon), 2002, 17(9-10):698-704.
[2]  13. Edwards WT, Ordway NR, Zheng Y, et al. Peak stresses observed in the posterior lateral anulus. Spine (Phila Pa 1976), 2001, 26(16): 1753-1759.
[3]  14. McMillan DW, McNally DS, Garbutt G, et al. Stress distributions inside intervertebral discs:the validity of experimental 'stress profilometry'. Proc Inst Mech Eng H, 1996, 210(2):81-87.
[4]  22. Stokes IA, Spence H, Aronsson DD, et al. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine (Phila Pa 1976), 1996, 21(10):1162-1167.
[5]  1. Shakil H, Iqbal ZA, Al-Ghadir AH, et al. Scoliosis:Review of types of curves, etiological theories and conservative treatment. J Back Musculoskelet Rehabil, 2014, 27(2):111-115.
[6]  2. Harrington PR. The etiology of idiopathic scoliosis. Clin Orthop Relat Res, 1977, (126):17-25.
[7]  3. Yamada K, Yamamoto H, Nakagawa Y, et al. Etiology of idiopathic scoliosis. Clin Orthop Relat Res, 1984, (184):50-57.
[8]  4. Burwell RG. Aetiology of idiopathic scoliosis:current concepts. Pediatr Rehabil, 2003, 6(3-4):137-170.
[9]  5. Perdriolle R, Becchetti S, Vidal J, et al. Mechanical process and growth cartilages. Essential factors in the progression of scoliosis. Spine (Phila Pa 1976), 1993, 18(3):343-349.
[10]  6. Mente PL, Stokes IA, Spence H, et al. Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine (Phila Pa 1976), 1997, 22(12):1292-1296.
[11]  7. Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration:overload versus immobilization. Spine (Phila Pa 1976), 2004, 29(23):2724-2732.
[12]  8. Stokes IA, Aronsson DD. Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord, 2001, 14(4):317-322.
[13]  9. Adams MA, McNally DS, Dolan P. Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg (Br), 1996, 78(6):965-972.
[14]  10. Yildiz KI, Isik C, Tecimel O, et al. Use of contact pressure-sensitive surfaces as an indicator of graft tension in medial patellofemoral ligament reconstruction. Arch Orthop Trauma Surg, 2013, 133(12): 1657-1663.
[15]  12. 刘长征, 姚庆强, 郑圣鼐, 等.非融合棘突间固定器不同棘突间撑开高度对植入节段椎间盘压力分布的影响.中国组织工程研究与临床康复, 2011, 15(39):7279-7283.
[16]  15. McNally DS, Adams MA. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976), 1992, 17(1): 66-73.
[17]  16. McNally DS, Adams MA, Goodship AE. Development and validation of a new transducer for intradiscal pressure measurement. J Biomed Eng, 1992, 14(6):495-498.
[18]  17. Nachemson AL. Disc Pressure Measurements. Spine (Phila Pa 1976), 1981, 6(1):93-97.
[19]  18. Gay RE, Zhao KD, Ilharreborde B, et al. The reliability of intradiscal stress profilometry in cadaveric lumbar discs. Journal of Musculoskeletal Research, 2006, 10(4):163-171.
[20]  19. Steffen T, Baramki HG, Rubin R, et al. Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. Clin Biomech (Bristol, Avon), 1998, 13(7): 495-505.
[21]  20. McAfee PC, Yuan HA, Fredrickson BE, et al. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg (Am), 1983, 65(4):461-473.
[22]  21. Mehlman CT, Araghi A, Roy DR. Hyphenated history:the HueterVolkmann law. Am J Orthop (Belle Mead NJ), 1997, 26(11):798-800.
[23]  23. Mente PL, Aronsson DD, Stokes IA, et al. Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res, 1999, 17(4):518-524.
[24]  24. Arkin AM, Katz JF. The Effects of Pressure on Epiphyseal Growth-The Mechanism of Plasticity of Growing Bone. J Bone Joint Surg (Am), 1956, 38-A(5):1056-1076.
[25]  25. Aronsson DD, Stokes IA, Rosovsky J, et al. Mechanical modulation of calf tail vertebral growth:implications for scoliosis progression. J Spinal Disord, 1999, 12(2):141-146.
[26]  26. Stokes IA, Aronsson DD, Spence H, et al. Mechanical modulation of intervertebral disc thickness in growing rat tails. J Spinal Disord, 1998, 11(3):261-265.
[27]  27. Coillard C, Rhalmi S, Rivard CH, et al. Experimental scoliosis in the minipig:study of vertebral deformations. Ann Chir, 1999, 53(8): 773-780.
[28]  28. Lowe TG, Edgar M, Chir M, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg (Am), 2000, 82-A(8): 1157-1168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133