12. Liu X, Che L, Xie YK, et al. Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study. Genom Data, 2015, 5: 80-81.
[2]
13. Li HR, Cui Q, Dong ZY, et al. Downregulation of miR-27b is Involved in Loss of Type II Collagen by Directly Targeting Matrix Metalloproteinase 13(MMP13) in Human Intervertebral Disc Degeneration. Spine (Phila Pa 1976), 2016, 41(3): E116-123.
[3]
17. Wang HQ, Yu XD, Liu ZH, et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol, 2011, 225(2): 232-242.
[4]
18. Hu P, Feng B, Wang G, et al. Microarray based analysis of gene regulation by microRNA in intervertebral disc degeneration. Mol Med Rep, 2015, 12(4): 4925-4930.
[5]
28. Peng Y, Lv FJ. Symptomatic versus Asymptomatic Intervertebral Disc Degeneration: Is Inflammation the Key? Crit Rev Eukaryot Gene Expr, 2015, 25(1): 13-21.
[6]
29. Wang XH, Hong X, Zhu L, et al. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-kappaB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Exp Biol Med (Maywood), 2015, 240(4): 411-417.
[7]
31. Liu G, Cao P, Chen H, et al. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One, 2013, 8(9): e75251.
[8]
33. Liu W, Zhang Y, Xia P, et al. MicroRNA-7 regulates IL-1beta-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells. Biomed Pharmacother, 2016, 83: 1414-1421.
[9]
34. Chen H, Wang J, Hu B, et al. MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem, 2015, 406(1-2): 21-30.
[10]
35. Liu MH, Sun C, Yao Y, et al. Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression. Sci Rep, 2016, 6: 25401.
[11]
37. Han W, Zhou Y, Zhong R, et al. Functional polymorphisms in FAS/FASL system increase the risk of neuroblastoma in Chinese population. PLoS One, 2013, 8(8): e71656.
[12]
43. Tsirimonaki E, Fedonidis C, Pneumaticos SG, et al. PKCepsilon signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One, 2013, 8(11): e82045.
[13]
44. Song YQ, Karasugi T, Cheung KM, et al. Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. J Clin Invest, 2013, 123(11): 4909-4917.
[14]
45. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327(5962): 198-201.
[15]
52. Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature, 2007, 448(7149): 39-43.
[16]
55. Kim HY, Kim HN, Lee SJ, et al. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regenerationin vivo. J Tissue Eng Regen Med, 2014.[Epub ahead of print].
[17]
56. Devulapally R, Sekar NM, Sekar TV, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano, 2015, 9(3): 2290-2302.
[18]
57. Arora S, Swaminathan SK, Kirtane A, et al. Synthesis, characterization, and evaluation of poly (D, L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. Int J Nanomedicine, 2014, 9: 2933-2942.
[19]
58. Ren Y, Zhou X, Mei M, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer, 2010, 10: 27.
[20]
60. Crew E, Tessel MA, Rahman S, et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal Chem, 2012, 84(1): 26-29.
[21]
2. Pereira DR, Silva-Correia J, Oliveira JM, et al. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration. J Tissue Eng Regen Med, 2013, 7(2): 85-98.
21. Liu H, Huang X, Liu X, et al. miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int J Mol Sci, 2014, 15(3): 4007-4018.
[24]
22. Yu X, Li Z, Shen J, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One, 2013, 8(12): e83080.
[25]
23. Li W, Wang P, Zhang Z, et al. MiR-184 regulates proliferation in nucleus pulposus cells by targeting GAS1. World Neurosurg, 2016. [Epub ahead of print].
[26]
42. Gu SX, Li X, Hamilton JL, et al. MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc. Gene, 2015, 555(2): 80-87.
[27]
59. Sun Z, Song X, Li X,et al. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 2014, 6(23): 14343-14353.
[28]
1. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2163-2196.
[29]
3. Zhang YG, Sun Z, Zhang Z, et al. Risk factors for lumbar intervertebral disc herniation in Chinese population: a case-control study. Spine (Phila Pa 1976), 2009, 34(25): E918-922.
[30]
4. Chou J, Shahi P, Werb Z. microRNA-mediated regulation of the tumor microenvironment. Cell Cycle, 2013, 12(20): 3262-3271.
[31]
5. Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer. J Pathol, 2011, 223(2): 102-115.
[32]
6. Economou EK, Oikonomou E, Siasos G, et al. The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis, 2015, 241(2): 624-633.
[33]
7. Wang C, Wang WJ, Yan YG, et al. MicroRNAs: New players in intervertebral disc degeneration. Clin Chim Acta, 2015, 450: 333-341.
[34]
8. Christopher AF, Kaur RP, Kaur G, et al. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res, 2016, 7(2): 68-74.
[35]
9. Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res, 2014, 114(11): 1827-1846.
[36]
10. Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature, 2012, 492(7429): 376-381.
[37]
11. Zhao B, Yu Q, Li H, et al. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration. Int J Mol Med, 2014, 33(1): 43-50.
[38]
14. Ji ML, Zhang XJ, Shi PL, et al. Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. J Mol Med (Berl), 2016, 94(4): 457-468.
[39]
15. Xu YQ, Zhang ZH, Zheng YF, et al. Dysregulated miR-133a Mediates Loss of Type II Collagen by Directly Targeting Matrix Metalloproteinase 9(MMP9) in Human Intervertebral Disc Degeneration. Spine (Phila Pa 1976), 2016, 41(12): E717-724.
[40]
16. Ji ML, Lu J, Shi PL, et al. Dysregulated miR-98 Contributes to Extracellular Matrix Degradation by Targeting IL-6/STAT3 Signaling Pathway in Human Intervertebral Disc Degeneration. J Bone Miner Res, 2016, 31(4): 900-909.
[41]
20. Ohrt-Nissen S, Dossing KB, Rossing M, et al. Characterization of miRNA expression in human degenerative lumbar disks. Connect Tissue Res, 2013, 54(3): 197-203.
[42]
24. Chen B, Huang SG, Ju L, et al. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4. Braz J Med Biol Res, 2016, 49(6): pii: S0100-879X2016000600602. doi: 10.1590/1414-431X20155020.
[43]
26. Liu ZQ, Fu WQ, Zhao S, et al. Regulation of insulin-like growth factor 1 receptor signaling by microRNA-4458 in the development of lumbar disc degeneration. Am J Transl Res, 2016, 8(5): 2309-2316.
[44]
27. Molinos M, Almeida CR, Caldeira J, et al. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface, 2015, 12(104): 20141191.
[45]
30. Wang T, Li P, Ma X, et al. MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-alpha-induced apoptosis by targeting JunD. Biochimie, 2015, 115: 1-7.
[46]
32. Liu W, Zhang Y, Feng X, et al. Inhibition of microRNA-34a prevents IL-1beta-induced extracellular matrix degradation in nucleus pulposus by increasing GDF5 expression. Exp Biol Med (Maywood), 2016, 241(17): 1924-1932.
[47]
25. Yan N, Yu S, Zhang H, et al. Lumbar Disc Degeneration is Facilitated by MiR-100-Mediated FGFR3 Suppression. Cell Physiol Biochem, 2015, 36(6): 2229-2236.
[48]
36. Thurner EM, Krenn-Pilko S, Langsenlehner U, et al. Association of genetic variants in apoptosis genes FAS and FASL with radiation-induced late toxicity after prostate cancer radiotherapy. Strahlenther Onkol, 2014, 190(3): 304-309.
[49]
38. Ye D, Dai L, Yao Y, et al. miR-155 Inhibits Nucleus Pulposus Cells, Degeneration through Targeting ERK 1/2. Dis Markers, 2016, 2016: 6984270.
[50]
39. Zhang DY, Wang ZJ, Yu YB, et al. Role of microRNA-210 in human intervertebral disc degeneration. Exp Ther Med, 2016, 11(6): 2349-2354.
[51]
40. Ma JF, Zang LN, Xi YM, et al. MiR-125a Rs12976445 Polymorphism is Associated with the Apoptosis Status of Nucleus Pulposus Cells and the Risk of Intervertebral Disc Degeneration. Cell Physiol Biochem, 2016, 38(1): 295-305.
[52]
41. Jing W, Jiang W. MicroRNA-93 regulates collagen loss by targeting MMP3 in human nucleus pulposus cells. Cell Prolif, 2015, 48(3): 284-292.
[53]
46. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med, 2013, 368(18): 1685-1694.
[54]
47. Lv H, Zhang S, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release, 2006, 114(1): 100-109.
[55]
48. Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther, 2010, 18(9): 1650-1656.
[56]
49. Dong X, Lin L, Chen J, et al. Multi-armed poly (aspartate-g-OEI) copolymers as versatile carriers of pDNA/siRNA. Acta Biomater, 2013, 9(6): 6943-6952.
[57]
50. Namgung R, Kim J, Singha K, et al. Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: study of physicochemical properties andin vitro gene transfection. Mol Pharm, 2009, 6(6): 1826-1835.
[58]
51. Park IK, Singha K, Arote RB, et al. pH-Responsive Polymers as Gene Carriers. Macromol Rapid Commun, 2010, 31(13): 1122-1133.
[59]
53. Hwang DW, Son S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 2011, 32(21): 4968-4975.
[60]
54. Zhou Y, Zhang L, Zhao W, et al. Nanoparticle-mediated delivery of TGF-beta1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials, 2013, 34(33): 8269-8278.
[61]
61. Bitar A, Ahmad NM, Fessi H, et al. Silica-based nanoparticles for biomedical applications. Drug Discov Today, 2012, 17(19-20): 1147-1154.
[62]
62. Masotti A, Miller MR, Celluzzi A, et al. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine, 2016, 12(6): 1511-1522.