3. Young M, Carter D, Worthington H, et al. Microbial analysis of bone collected during implant surgery: a clinical and laboratory study. Clinical Oral Implants Research, 2001, 12(2): 95-103.
26. Li JF, Zheng QX, Guo XD, et al. Bone induction by surface-double-modified true bone ceramics In Vitro and In Vivo. Biomedical Material, 2013, 3(8): 4690-4701.
[8]
28. Briem D, Linhart W, Lehmann W, et al. Long-term outcomes after using porous hydroxyapatite ceramics (Endobon) for surgical management of fractures of the head of the tibia. Unfallchirurg, 2002,105(2): 128-133.
[9]
2. Johansson B, Grepe A, Wannfors K, et al. A clinical study of changes in the volume of bone grafts in the atrophic maxilla. Dento Maxillo Facial Radiology, 2001, 30(3): 157-161.
[10]
6. Gong TF, Xia RY, Yang CH, et al. Study of gelatinized marrow stroma osteoblasts and true bone ceramic active bone. Chinese Journal of Traumatology, 2005, 8(2): 91-95.
[11]
7. Hollinger JD, Battistone GC. Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop Relat Res, 1986, (207): 290-305.
[12]
8. Lee HR, Kim HJ, Ko JS, et al. Comparative Characteristics of Porous Bioceramics for an Osteogenic Response In Vitro and In Vivo. PLoS One, 2013, 8(12): e84272.
18. ?poner P, Strnadová M, Urban K. In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: comparison with deproteinised bovine bone. International Orthopaedics, 2011, 35(10): 1553-1560.
20. Iwata M, Nishijima K. Experimental study of two-step grafting of fetal bone: comparison with newborn bone and influence of MHC. Transplantation Proceedings, 1994, 26(2): 959-962.