|
- 2015
改进Back Propagation神经网络预测麻纤维/UP复合材料的界面性能
|
Abstract:
为研究麻纤维化学成分对其增强复合材料界面性能的影响, 选取麻纤维纤维素、半纤维素、果胶、木质素、水溶物、脂蜡质成分含量及回潮率作为影响因素, 以麻纤维/不饱和聚酯树脂(UP)复合材料界面性能作为影响结果, 构建Back Propagation (BP)神经网络的训练样本.首先, 利用灰关联分析法对影响麻纤维/UP复合材料界面性能的因素进行关联度计算; 其次, 按照影响程度的大小进行排序, 建立3层BP神经网络模型进行迭代训练; 最后, 预测麻纤维化学成分含量对麻纤维/UP复合材料界面性能的影响.预测结果表明: 学习结束后模型的输出比较接近实测值, 说明BP神经网络具有很强的学习能力, 同时也证明了将BP神经网络用于麻纤维/UP复合材料界面剪切力预测的可行性;灰关联与BP神经网络联用后预测精度得到大大提高, 预测误差最大可减小83.28%. In order to investigate the influence of fiber chemical composition on interfacial properties of the reinforced composites, the back propagation (BP) neural network training sample was constructed with the composition cellulose, hemicellulose, pectin, lignin, water-soluble material, grease waxand moisture regain of bast fibers as factors, and the interfacial properties of bast fibers/unsaturated polyester resin (UP) composites as the results. The gray relational analysis method was employed to investigate the correlation degree of factors which have influence on the interfacial properties of bast fibers/UP composites, and the factors were ranked according to the size of influence degree.A three layer BP neural network model was constructed for iterative training. The effects of chemical composition content on interfacial properties of bast fibers/UP composites can be predicted. The prediction results show that the prediction model output is close to the measured values after learning. It proves that the BP neural network has strong ability to learn which means that the BP neural network can be used in the prediction of interfacial shear force of bast fibers/UP composites. The prediction accuracy is greatly improved and can be reduced by as large as 83.28% with the combination of gray relational analysis and BP neural network. 国家自然科学基金(51303131,51206122)
[1] | Michael K D, Simon P. Engineering bast fiber feedstocks for use in composite materials[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(1): 53-57. |
[2] | Huang Y D, Kong X R, Zhang Z Q, et al. Effect of interlayer on the load carrying capabilities between fiber and matrix[J]. Acta Materiae Compositae Sinica, 1996, 13(3): 21-25 (in Chinese). 黄玉东, 孔宪仁, 张志谦, 等. 界面层对纤维与基体间载荷传递能力的影响[J]. 复合材料学报, 1996, 13(3): 21-25. |
[3] | Zhang L, Huang G. Development and applications of linen fiber reinforced composites[J]. Fiber Reinforced Plastics/Composites, 2012(3): 81-83 (in Chinese). 张璐, 黄故. 麻纤维增强热塑性复合材料及其开发应用[J]. 玻璃钢/复合材料, 2012(3): 81-83. |
[4] | Mitra B C, Basak R K, Sarkar M. Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers[J]. Journal of Applied Polymer Science, 1998, 67(6): 1093-1100. |
[5] | Bledzki A K, Gassan J. Composites reinforced with cellulose based fibers[J]. Progress in Polymer Science, 1999, 24(2): 221-274. |
[6] | Chen D K, Li J, Ren J. Study on sound absorption property of ramie fiber reinforced poly (L-lactic acid) composites: Morphology and properties[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 1012-1018. |
[7] | Nishino T. Kenaf reinforced biodegradable composite[J]. Composite Science Technology, 2003, 63(9): 1281-1286. |
[8] | Verma B B. Continuous jute fiber reinforced laminated paper composite and reinforcement-fiber free paper laminate[J]. Bulletin of Materials Science, 2009, 32(6): 589-595. |
[9] | Li Y, Mai Y W, Ye L. Sisal fiber and its composites: A review of recent developments[J]. Composites Science and Technology, 2000, 60(1): 2017-2055. |
[10] | Springer G S. Environmental effects on composite materials[M]. Westport: Teehnomic Publishing Company, 1981: 75-76. |
[11] | Textile Industry Standardization Institute. GBT 5883—1986 Testing method of moisture regain and moisture content of ramie fiber[S]. Beijing: Standards Press of China, 1986 (in Chinese). 纺织工业部标准化研究所. GBT 5883—1986苎麻回潮率、含水率试验方法[S]. 北京: 中国标准出版社, 1986. |
[12] | Textile Industry Standardization Institute. GBT 5889—1986 Method of qualitative analysis of ramie chemical components[S]. Beijing: Standards Press of China, 1986 (in Chinese). 纺织工业部标准化研究所. GBT 5889—1986 苎麻化学成分定量分析方法[S]. 北京: 中国标准出版社, 1986. |
[13] | Wong S, Shanks R A, Hodzic A. Effect of additives on the interfacial strength of poly (L-lactic acid) and poly (3-hydroxy butyric acid)-flax fiber composites[J]. Composites Science and Technology, 2007, 67(11-12): 2478-2484. |
[14] | Deng J L. Grey system theory course[M]. Wuhan: Huazhong University of Science and Technology Publishing House, 1985: 3-15 (in Chinese). 邓聚龙. 灰色控制系统[M]. 武汉: 华中工学院出版社, 1985: 3-15. |
[15] | Deng J L. Grey system theory course[M]. Wuhan: Huazhong University of Science and Technology Publishing House, 1990: 23 (in Chinese). 邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990: 23. |
[16] | Li X F. Grey system analysis on raw ramie and the quality of its yarn[J]. Journal of Textile Research, 2006, 27(1): 20-22 (in Chinese). 李晓峰. 苎麻纤维原料品质与成纱品质指标的灰关联分析[J]. 纺织学报, 2006, 27(1): 20-22. |
[17] | Chen D S, Zhao S J. Grey evaluation of fabric style[J]. Journal of Textile Research, 1998(2): 12-14 (in Chinese). 陈东生, 赵书经. 织物风格的灰色评价[J]. 纺织学报, 1998 (2): 12-14. |
[18] | Rong J Q, Lao J H, He P. Grey correlation analysis of physicical properties, concomitants content of scutched flax and yarn strength[J]. Journal of Qiqihar University, 2013, 29 (6): 17-21 (in Chinese). 戎佳琦, 劳继红, 何平. 亚麻打成麻物理性能、伴生物含量与细纱强力的灰关联分析[J]. 齐齐哈尔大学学报, 2013, 29 (6): 17-21. |
[19] | Wang X, Wang H, Wang W H. Fundamentals and application of artificial neural[M]. Shenyang: Northeastern University Press, 2000: 15 (in Chinese). 王旭, 王宏, 王文辉. 人工神经网络原理与应用[M]. 沈阳: 东北大学出版社, 2000: 15. |
[20] | Zhu D Q, Shi H. Fundamentals and application of artificial neural networks[M]. Beijing: Science Press, 2006: 33 (in Chinese). 朱大奇, 史慧. 人工神经网络原理及应用[M]. 北京: 科学出版社, 2006: 33. |
[21] | Ramesh M C, Jayaraman R R S. The prediction of yarn tensile properties by using artificial neural networks[J]. Journal of the Textile Institute, 1995, 86(3): 459-469. |
[22] | Sete V L L A. The use of neural nets to predict yarn tensile properties[J]. Journal of the Textile Institute, 1996, 82(2): 400-402. |
[23] | Luo C, David L A. Yarn strength prediction using neural networks: Part I: Fiber properties and yarn strength relationship[J]. Textile Research Journal, 1995, 65(9): 495-500. |
[24] | Dong K Y, Yu W D. Yarn property prediction models based on BP neural network[J]. Journal of Donghua University: Natural Science, 2005, 31(2): 88-92 (in Chinese). 董奎勇, 于伟东. 基于BP神经网络的纺纱质量预报模型[J]. 东华大学学报: 自然科学版, 2005, 31(2): 88-92. |
[25] | Lu B, Zhang L W, Zeng J C. Natural fiber reinforced composite[M]. Beijing: Chemistry Industry Press, 2005: 8-9 (in Chinese). 鲁博, 张林文, 曾竟成. 天然纤维复合材料[M]. 北京: 化学工业出版社, 2005: 8-9. |
[26] | Wu X S, Chen X B, Song H C. Effect of the boundary layer on the strength of composites[J]. Acta Materiae Compositae Sinica, 1987, 4(4): 18-23 (in Chinese). 吴鑫森, 陈祥宝, 宋焕成. 界面层对复合材料强度的影响[J]. 复合材料学报, 1987, 4(4): 18-23. |