全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于密度分布曲线法的复合材料变刚度铺层优化
Ply optimization of variable stiffness for composite based on density distribution curve method

DOI: 10.13801/j.cnki.fhclxb.20150625.001

Keywords: 复合材料,变刚度,优化,密度分布曲线法,BCP方法
composites
,variable stiffness,optimization,density distribution curve method,BCP method

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于梯度的优化方法对复合材料层合板进行了变刚度铺层优化设计.在优化过程中需确定铺层中各单元的密度以及角度.为了使优化结果具有可制造性, 优化结果需满足制造工艺约束并且铺层角度需从预定角度中选取.为了避免在优化问题中引入过多的约束并减少设计变量的数目, 提出密度分布曲线法(DDCM)对层合板中各单元的密度进行参数化.根据各单元的密度以及角度设计变量并基于Bi-value Coding Parameterization(BCP)方法中的插值公式确定各单元的弹性矩阵.优化过程中以结构柔顺度作为优化目标, 结构体积作为约束, 优化算法采用凸规划对偶算法.对碳纤维复合材料的算例结果表明: 采用DDCM可得到较理想的优化结果, 并且收敛速率较快. A gradient based optimization method for variable stiffness design of laminates was proposed. The optimal element density and orientations were determined in the optimization process. In order to attain industrial relevance, the manufacturing constraint should be satisfied and candidate orientations were limited to a finite set. For the purpose of eliminating the number of constraints and design variables in optimization model, the density distribution curve method (DDCM) was established to parameterize element density. The elastic matrix of element was determined on basis of interpolation scheme in bi-value coding parameterization(BCP) method, according to element density and design variables of orientations. Strucrure compliance and volume were treated as optimization objective and constraint respectively in optimization process. The optimization problem was solved by the convex programming dual algorithm. Numerical examples for the carbon fiber composite demonstrate that reasonable results can be got by DDCM with relatively high convergence rate.

References

[1]  Gurdal Z, Olmedo R. In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept [J]. AIAA Journal, 1993, 31(4): 751-758.
[2]  Blom A W, Setoodeh S, Hol J M A M, et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency [J]. Computers & Structures, 2008, 86(9): 870-878.
[3]  Lopes C S, Camanho P P, Gürdal Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels [J]. International Journal of Solids and Structures, 2007, 44(25): 8493-8516.
[4]  Ghiasi H, Fayazbakhsh K, Pasini D, et al. Optimum stacking sequence design of composite materials Part II: Variable stiffness design[J]. Composite Structures, 2010, 93(1): 1-13.
[5]  Stegmann J, Lund E. Discrete material optimization of general composite shell structures [J]. International Journal for Numerical Methods in Engineering, 2005, 62(14): 2009-2027.
[6]  Lund E. Buckling topology optimization of laminated multi-material composite shell structures[J]. Composite Structures, 2009, 91(2): 158-167.
[7]  Gao T, Zhang W, Duysinx P. A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate[J]. International Journal for Numerical Methods in Engineering, 2012, 91(1): 98-114.
[8]  Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3): 305-323.
[9]  Setoodeh S, Abdalla M M, Gürdal Z. Design of variable-stiffness laminates using lamination parameters [J]. Composites Part B: Engineering, 2006, 37(4): 301-309.
[10]  Hyer M W, Lee H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes [J]. Composite Structures, 1991, 18(3): 239-261.
[11]  Lopes C S, Gürdal Z, Camanho P P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907.
[12]  Lopes C S, Camanho P P, Gürdal Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels [J]. International Journal of Solids and Structures, 2007, 44(25): 8493-8516.
[13]  Ghiasi H, Fayazbakhsh K, Pasini D, et al. Optimum stacking sequence design of composite materials Part II: Variable stiffness design[J]. Composite Structures, 2010, 93(1): 1-13.
[14]  Stegmann J, Lund E. Discrete material optimization of general composite shell structures [J]. International Journal for Numerical Methods in Engineering, 2005, 62(14): 2009-2027.
[15]  Setoodeh S, Abdalla M M, Gürdal Z. Design of variable-stiffness laminates using lamination parameters [J]. Composites Part B: Engineering, 2006, 37(4): 301-309.
[16]  Hyer M W, Lee H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes [J]. Composite Structures, 1991, 18(3): 239-261.
[17]  Gurdal Z, Olmedo R. In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept [J]. AIAA Journal, 1993, 31(4): 751-758.
[18]  Lopes C S, Gürdal Z, Camanho P P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907.
[19]  Blom A W, Setoodeh S, Hol J M A M, et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency [J]. Computers & Structures, 2008, 86(9): 870-878.
[20]  Lund E, Stegmann J. On structural optimization of composite shell structures using a discrete constitutive parametrization [J]. Wind Energy, 2005, 8(1): 109-124.
[21]  Lund E, Stegmann J. Eigenfrequency and buckling optimization of laminated composite shell structures using discrete material optimization[C]//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer Netherlands, 2006: 147-156.
[22]  Srensen S N, Lund E. Topology and thickness optimization of laminated composites including manufacturing constraints[J]. Structural and Multidisciplinary Optimization, 2013, 48(2): 249-265.
[23]  Bruyneel M. SFP-A new parameterization based on shape functions for optimal material selection: Application to conventional composite plies[J].Structural and Multidisciplinary Optimization, 2011, 43(1): 17-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133