|
- 2016
Gd2O3空心微球的制备及Gd2O3/丁基橡胶复合材料低频阻尼性能
|
Abstract:
以分散聚合法制备的聚苯乙烯(PS)微球作为模板,通过均相沉淀法制备前驱体PS-Gd(OH)CO3复合微球,高温煅烧后得到Gd2O3空心微球,将其与丁基橡胶复合制备低频高阻尼Gd2O3/丁基橡胶复合材料。采用FTIR、SEM、TEM分析、TG分析仪、XRD分析和XPS对Gd2O3空心微球的形貌与结构组成进行表征。将Gd2O3空心微球与粉体分别作为填料加入丁基橡胶中制备Gd2O3/丁基橡胶复合材料。结果表明:Gd2O3空心微球由立方萤石结构的颗粒组成,外空心直径为0.9μm,壳层厚度约为100nm;添加空心微球的复合材料阻尼性能较好;与纯丁基橡胶相比,Gd2O3/丁基橡胶复合材料的低频阻尼性能明显提高。 The polystyrene (PS) microspheres which were prepared by dispersion polymerization method were served as a template, the precursor PS-Gd (OH) CO3 composite microspheres were prepared by homogeneous precipitation technique. The Gd2O3 hollow microspheres were obtained after the polymer microsphere templates were removed through calcinations. Low frequency and high damping Gd2O3/butyl rubber composites were prepared by blending Gd2O3 hollow microspheres with butyl rubber. FTIR, SEM, TEM, TG analysis, XRD and XPS were employed to characterize the structure and morphology of the Gd2O3 hollow microspheres. Gd2O3/butyl rubber composites were prepared by adding Gd2O3 hollow microspheres and powder as fillers to the butyl rubber separately. The results show that Gd2O3 hollow microspheres were composed of cubic fluorite structure with 0.9 μm outer diameter and about 100 nm shell thickness. The damping properties of composite with Gd2O3 hollow microspheres are better than that with Gd2O3 powder. Low frequency damping property of Gd2O3/butyl rubber composite has improved significantly compared with that of pure butyl rubber. 国家自然科学基金(51273154);武汉工程大学研究生教育创新基金(CX2013064)
[1] | WHITE M J, SWENSON JR G W, BORROWMAN T A, et al. Low-frequency sound propagation in porous media:Glass spheres and pea gravel[J]. Applied Acoustics, 2012, 73(11):1146-1149. |
[2] | BRUNE H, GIOVANNINI M, BROMANN K, et al. Self organized growth of nanostructure arrays on strain-relief patterns[J]. Nature, 1998, 394(6692):451-453. |
[3] | MANN S, OZIN G A. Synthesis of inorganic materials with complex form[J]. Nature, 1996, 382(6589):313-318. |
[4] | LIU Y C, YANG P P, WANG W X, et al. Fabrication and photoluminescence properties of hollow Gd2O3:Ln (Ln=Eu3+, Sm3+) spheres via[WTBX] [WTBZ]a sacrificial template method[J]. CrystEngComm, 2010, 12(11):3717-3723. |
[5] | XU K, RANJITH R, LAHA A, et al. Atomic layer deposition of Gd2O3 and Dy2O3:A study of the ALD characteristics and structural and electrical properties[J]. Chemistry of Materials, 2012, 24(4):651-658. |
[6] | YU S M, CHA J, LEE J K. Synthesis of Eu3+-doped Gd2O3 in hollow nanoparticle structures by controlled chemical etching with poly (acrylic acid)[J]. RSC Advances, 2013, 3(37):16374-16379. |
[7] | 刘桂霞, 刘姝君, 董相廷, 等. 水热法制备多层核壳结构Gd2O3:Eu3+空心微球[J]. 无机化学学报, 2010, 26(1):35-39. LIU G X, LIU S J, DONG X T, et al. Hydrothermal synthesis of multi-layer core-shell structural Gd2O3:Eu3+ hollow microspheres[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(1):35-39 (in Chinese). |
[8] | PARK J U, LEE H J, CHO W, et al. Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers[J]. Advance Materials, 2011, 23(28):3161-3164. |
[9] | YANG Z Z, NIU Z W, LU Y F, et al. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles[J]. Angewandte Chemie International Edition, 2003, 42(17):1943-1945. |
[10] | CHEN M, WU L M, ZHOU S X, et al. A method for the fabrication of monodisperse hollow silica spheres[J]. Advanced Materials, 2006, 18(6):801-806. |
[11] | 于利刚, 李朝晖, 王仁乾, 等. 含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析[J]. 物理学报, 2013, 62(6):280-288. YU L G, LI Z H, WANG R Q, et al. Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell[J]. Acta Physica Sinica, 2013, 62(6):280-288 (in Chinese). |
[12] | 蔡俊, 李亚红, 蔡伟民. PZT/CB/PVC压电导电高分子复合材料的吸声机理[J]. 高分子材料科学与工程, 2007, 23(4):215-218. CAI J, LI Y H, CAI W M. Study on acoustic absorption mechanism of piezoelectric and electrical conductive polymeric composite PZT/CB/PVC[J]. Polymer Materials Science and Engineering, 2007, 23(4):215-218 (in Chinese). |
[13] | CARUSO F. Nanoengineering of particle surfaces[J]. Advance Materials, 2001, 13(1):11-22. |
[14] | ZHANG J, LIU X, WU S, et al. Au nanoparticle-decorated porous SnO2 hollow spheres:A new model for a chemical sensor[J]. Journal of Materials Chemistry, 2010, 20(31):6453-6459. |
[15] | CARUSO F, CARUSO R A, M?HWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391):1111-1114. |
[16] | 张丹华, 王璐, 郭洪波, 等. 多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J]. 复合材料学报, 2011, 28(2):179-184. ZHANG D H, WANG L, GUO H B, et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J]. Acta Materiae Compositae Sinica, 2011, 28(2):179-184 (in Chinese). |
[17] | JIA G, ZHANG C M, DING S W, et al. General synthesis route to fabricate uniform upconversion luminescent gadolinium oxide hollow spheres[J]. Journal of Nanoscience & Nanotechnology, 2011, 11(8):6875-6879. |
[18] | ZHANG L X, SUN Y X, JIU H F, et al. Facile synthesis and luminescence properties of Gd2O3:Tb hollow microspheres[J]. Micro & Nano Letters, 2011, 6(11):927-931. |