|
- 2015
碳纤维无纺布对CFRP层板层间的增韧作用及机制
|
Abstract:
为了揭示短纤维无纺布对碳纤维增强树脂基复合材料(CFRP)层板层间韧性的影响规律, 测试了不同面密度(1.95、3.90、7.80和15.60 mg/cm2)和不同纤维平均长度(0.8 mm和4.3 mm)的碳纤维无纺布增韧的CFRP层板I型层间断裂韧性.实验结果表明:对于不同短纤维增韧的CFRP层板, 平均长度为0.8 mm的短纤维增韧效果优于平均长度为4.3 mm的短纤维, 并且面密度为7.8 mg/cm2、厚度约为150 μm、平均长度为0.8 mm的碳纤维无纺布显著提高了CFRP层板的层间断裂韧性, 与未改性的CFRP层板相比, 其能量释放率最大可提高99%.光学显微镜观察结果表明环氧基体中长度为0.8 mm的短纤维具有三维交织结构, 该结构可以有效地阻止裂纹的扩展;SEM观察结果表明短纤维从环氧基体中的脱粘和拔出以及短纤维周围环氧基体的塑性变形是CFRP层板的主要增韧机制.研究结论为层板短纤维增韧技术的应用奠定了基础. In order to reveal the effect laws of non-woven short fiber tissues on interlaminar fracture toughness of carbon fiber-reinforced polymer (CFRP) laminates, the mode I interlaminar fracture toughness of CFRP laminates toughened with non-woven carbon fiber tissues of different areal densities (1.95, 3.90, 7.80 and 15.60 mg/cm2) and different average lengths of fibers (0.8 mm and 4.3 mm) were investigated. The experimental results show that for the CFRP laminates toughened with different short fibers, the toughening performance of short fibers whose average length is 0.8 mm is better than that of short fibers whose average length is 4.3 mm, and the non-woven carbon fiber tissue with the areal density of 7.8 mg/cm2, thickness about 150 μm and average length of 0.8 mm significantly enhances the interlaminar fracture toughness of CFRP laminates, the energy release rate is improved by 99% at best comparing with that of unmodified CFRP laminate. The optical microscopy observation results show that the short fibers whose length is 0.8 mm have 3D interleaved structure in epoxy matrix, the structure can prevent the cracks form propagation effectively. SEM observation results indicate that the debonding and pullout of short fibers from epoxy matrix and plastic deformation of epoxy matrix around short fibers are the main toughening mechanisms of CFRP laminates. The research conclusions lay down the foundation for application of short fibers toughening technique for laminates. 澳大利亚ARC资助项目(DP130104648);国家自然科学基金(21004041)
[1] | Xie X Q, Chen Z F, Guo S S. Bridge bearing capacity test and the application research carbon fiber reinforcement technology[J]. Advanced Materials Research, 2015, 1065: 860-864. |
[2] | Zhang T T, Zhou H, Shi W H, et al. Numerical simulation of the Z-pin inserting effect on mechanical properties of 2D woven composite laminate[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 295-303 (in Chinese). 张涛涛, 周洪, 史文华, 等. Z-pin 植入对二维机织复合材料层合板力学性能影响的数值模拟[J]. 复合材料学报, 2014, 31(2): 295-303. |
[3] | Ishai O, Rosenthal H, Sela N, et al. Effect of selective adhesive interleaving on interlaminar fracture toughness of graphite/epoxy composite laminates[J]. Composites, 1988, 19(1): 49-54. |
[4] | Lee S H, Noguchi H, Kim Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I—Mode II[J]. Journal of Composite Materials, 2002, 36(18): 2153-2168. |
[5] | Lee S H, Noguchi H, Kim Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part II—Mode I[J]. Journal of Composite Materials, 2002, 36(18): 2169-2181. |
[6] | Lee S H, Kim H, Hang S, et al. Interlaminar fracture toughness of composite laminates with CNT-enhanced nonwoven carbon tissue interleave[J]. Composites Science and Technology, 2012, 73: 1-8. |
[7] | Izamshah R, Akmal M, Ali M A, et al. Finite element model of trimming CFRP aerospace composites[J]. Applied Mechanics and Materials, 2014, 695: 163-166. |
[8] | Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
[9] | Sprenger S, Kothmann M H, Altstaedt V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles[J]. Composites Science and Technology, 2014, 105: 86-95. |
[10] | Dransfield K, Baillie C, Mai Y W. Improving the delamination resistance of CFRP by stitching—A review[J]. Composites Science and Technology, 1994, 50(3): 305-317. |
[11] | Dong H M, Yi X S, An X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273-285 (in Chinese). 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285. |
[12] | Sohn M S, Hu X Z. Delamination behavior of carbon fibre/epoxy composite laminates with short fibre reinforcement[J]. Scripta Metallurgica et Materialia, 1994, 30(11): 1467-1472. |
[13] | Park B Y, Kim S C. A study of the interlaminar fracture toughness of a carbon-fiber/epoxy composite containing surface-modified short Kevlar fibers[J]. Composites Science and Technology, 1998, 58(10): 1599-1606. |
[14] | Blanco J, García E J, de Villoria R G, et al. Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes[J]. Journal of Composite Materials, 2009, 43(8): 825-841. |
[15] | Zeng Y, Liu H Y, Mai Y W, et al. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nanoparticles[J]. Composites Part B: Engineering, 2012, 43(1): 90-94. |
[16] | Du X S, Liu H Y, Xu F, et al. Flame growth of carbon nanotubes onto carbon fiber reinforced polymer composite laminates[J]. Composites Science and Technology, 2014, 101: 159-166. |
[17] | American Society for Testing Materials International. ASTM-D5528 Standard test method for mode I interlaminar fracture toughness of unidirectional fibre-reinforced polymer matrix composites[S]. West Conshohocloen: ASTM International, 2008. |
[18] | Lee S H, Lee J H, Cheong S K, et al. A toughening and strengthening technique of hybrid composites with non-woven tissue[J]. Journal of Materials Processing Technology, 2008, 207(1): 21-29. |