|
- 2018
玻璃纤维增强聚丙烯复合材料制孔损伤
|
Abstract:
为抑制玻璃纤维增强聚丙烯复合材料(GF/PP)制孔损伤并提高其制孔效率,本文通过钻削实验获得多种进给速度下的GF/PP复合材料钻削轴向力和出口温度,使用高速摄影设备对刀具钻出过程进行在线观测,研究出口材料去除过程及其损伤成因,分析进给速度对GF/PP复合材料制孔损伤的影响规律。结果表明:GF/PP复合材料的钻削出口温度在低速进给时显著升高,在高速进给时基本趋于稳定;出口撕裂是重要的出口损伤形式,成因是大片毛刺受副切削刃的撞击和撕挤,进给速度过高或过低均会加剧损伤; 0°毛刺在低速进给时较严重,入口撕裂在高速进给时较严重。 In order to diminish drilling damage of glass fiber reinforced polypropylene composite (GF/PP) and improve its drilling efficiency, thrust force and outlet temperature during drilling GF/PP composites for various feed rates were measured by drilling experiments, and outlet processes of drilling were instituted observed with high-speed photography equipment. Outlet material removal process and damage mechanisms were demonstrated. Effect of feed rates on GF/PP composites drilling damage was analyzed. The results show that the outlet drilling temperature is high with low feed rates and becomes relatively steady as feed rates increasing; Outlet tearing is mainly outlet damage and caused by the tearing of large burrs by the cutting edges; It becomes severe with a too high or low feed rate. 0° burr is serious with low feed rates; Inlet tearing is serious with high feed rates. NSCF-辽宁联合基金重点项目(U1508207);国家自然科学基金面上项目(51575082);国家973计划(2014CB046503);国家自然科学基金创新研究群体项目(51621064);中央高校基本科研业务费专项资金(DUT16TD01)
[1] | KAKINUMA Y, ISHIDA T, KOIKE R, et al. Ultrafast feed drilling of carbon fiber-reinforced thermoplastics[J]. Procedia CIRP, 2015, 35:91-95. |
[2] | KIM D, RAMULU M, DOAN X. Influence of consolidation process on the drilling performance and machinability of PIXA-M and PEEK thermoplastic composites[J]. Journal of Thermoplastic Composite Materials, 2005, 18(3):195-217. |
[3] | CHE D, SAXENA I, HAN P, et al. Machining of carbon fiber reinforced plastics/polymers:A literature review[J]. Journal of Manufacturing Science & Engineering, 2014, 136(3):034001. |
[4] | ZHAI Z, GR?SCHEL C, DRUMMER D. Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures[J]. Polymer Testing, 2016, 54:126-133. |
[5] | 贾振元, 宿友亮, 张博宇, 等. 基于径向基函数神经网络的CFRP切削力预测[J]. 复合材料学报, 2016, 33(3):516-524. JIA Z Y, SU Y L, ZHANG B Y, et al. Prediction of cutting force in CFRP based on radial basis function neural network[J]. Acta Materiae Compoisitae Sinica, 2016, 33(3):516-524(in Chinese). |
[6] | SHIN S, JANG J. Fractographical analysis on the mode Ⅱ delamination in woven carbon fiber reinforced epoxy compo-sites[J]. Journal of Materials Science, 1999, 34(21):5299-5306. |
[7] | 王永利. 玻璃纤维增强热塑性树脂基复合材料的机械连接性能研究[D]. 上海:东华大学, 2017. WANG Y L. A study on the mechanically fastened joint of glass fiber reinforced thermoplastic[D]. Shanghai:Donghua University, 2017(in Chinese). |
[8] | BIRON M. Thermoplastics and thermoplastic composites[M]. Kidlington:William Andrew, 2013, 769-828. |
[9] | JUNG K, KIM D, KIM H, et al. Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness[J]. Composite Structures, 2017, 160:446-456. |
[10] | 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报. 2015, 32(2):301-316. CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32(2):301-316(in Chinese). |
[11] | 高汉卿, 贾振元, 王福吉, 等. 基于细观仿真建模的CFRP细观破坏[J]. 复合材料学报, 2016, 33(4):758-767. GAO H Q, JIA Z Y, WANG F J, et al. Mesoscopic failure of CFRP based on mesoscopic simulation modeling[J]. Acta Materiae Compositae Sinica, 2016, 33(4):758-767(in Chinese). |
[12] | 殷俊伟, 贾振元, 王福吉, 等. 基于CFRP切削过程仿真的面下损伤形成分析[J]. 机械工程学报. 2016, 52(17):58-64. YIN J W, JIA Z Y, WANG F J, et al. FEM simulation analysis of subsurface damage formation based on continuously cutting process of CFRP[J]. Journal of Mechanical Engineering, 2016, 52(17):58-64(in Chinese). |
[13] | 贾振元, 何春伶, 付饶, 等. 基于CFRP层合板钻削轴向力时变曲线的钻头几何形状分析[J]. 复合材料学报, 2016, 33(12):2757-2765. JIA Z Y, HE C L, FU R, et al. Analysis of drilling bit geometry based on time varying curve of drilling thrust force for CFRP composite laminates[J]. Acta Materiae Compositae Sinica, 2016, 33(12):2757-2765(in Chinese). |
[14] | YOSHIDA T, ISHIAKU U S, OKUMURA H, et al. The effect of molecular weight on the interfacial properties of GF/PP injection molded composites[J]. Composites Part A:Applied Science & Manufacturing, 2006, 37(12):2300-2306. |
[15] | VARATHARAJAN R, MALHOTA S K, VIJAYARAGHAVAN L, et al. Mechanical and machining characteristics of GF/PP and GF/polyester composites[J]. Materials Science and Engineering:B, 2006, 132(1-2):134-137. |
[16] | PALANIKUMAR K, SRINIVASAN T, RAJAGOPAL K, et al. Thrust force analysis in drilling glass fiber reinforced/polypropylene (GFR/PP) composites[J]. Materials & Manufacturing Processes, 2016, 31(5):581-586. |
[17] | SRINIVASAN T, PALANIKUMAR K, RAJAGOPAL K, et al. Optimization of delamination factor in drilling GFR-Polypropylene composites[J]. Materials & Manufacturing Processes, 2017, 32(2):226-233. |
[18] | SORRENTINO L, TURCHETTA S, BELLINI C. In process monitoring of cutting temperature during the drilling of FRP laminate[J]. Composite Structures, 2017, 168:549-561. |
[19] | 温泉, 郭东明, 高航, 等. 基于划痕试验的碳纤维/环氧树脂复合材料制孔毛刺与撕裂缺陷形成机制[J]. 复合材料学报, 2014, 31(1):9-17. WEN Q, GUO D M, GAO H, et al. Burr and spalling damages formation mechanism of carbon/epoxy composites by scratching experiment[J]. Acta Materiae Compositae Sinica, 2014, 31(1):9-17(in Chinese). |
[20] | DE B I, JACQUES S, VAN P W, et al. Study of the mode I and mode Ⅱ interlaminar behaviour of a carbon fabric reinforced thermoplastic[J]. Polymer Testing, 2012, 31(2):322-332. |