全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

牛血清环境下等离子喷涂ZrO2增强羟基磷灰石涂层的摩擦磨损性能
Friction and wear properties of plasma-sprayed ZrO2 reinforced hydroxyapatite coatings in bovine serum environment

DOI: 10.13801/j.cnki.fhclxb.20150323.002

Keywords: 羟基磷灰石,磨损机制,牛血清,ZrO2,等离子喷涂
hydroxyapatite
,wear mechanisms,bovine serum,ZrO2,plasma spraying

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究ZrO2增强羟基磷灰石(HA)复合涂层在牛血清润滑环境下的摩擦磨损性能, 首先, 采用等离子喷涂技术在钛合金基体上制备了ZrO2含量分别为0、15wt%和30wt%的HA生物陶瓷涂层;然后, 分析了ZrO2/HA复合涂层的物相成分和结合强度;最后, 采用UMT-3销盘摩擦试验机研究了ZrO2/HA复合涂层在牛血清润滑环境下的摩擦磨损性能, 观察涂层磨损表面微观形貌并分析了磨损机制.结果表明:HA涂层的主要物相为HA, 15wt% ZrO2/HA复合涂层和30wt% ZrO2/HA复合涂层中的ZrO2以立方相形式存在, 并且衍射峰强度高于HA的.随着ZrO2含量增大, 涂层的结合强度明显增大.ZrO2/HA复合涂层与纯HA涂层相比, 有更好的耐磨性和更低的摩擦系数.纯HA涂层的磨损机制以犁沟效应和磨粒磨损为主, 而15wt% ZrO2/HA复合涂层和30wt% ZrO2/HA复合涂层的磨损机制为脆性剥落磨损. In order to investigate the friction and wear properties of ZrO2 reinforced hydroxyapatite (HA) composite coatings in bovine serum lubrication environment, HA bio-ceramic coatings whose ZrO2 contents were 0, 15wt% and 30wt% respectively were prepared on titanium alloy substrates by plasma spraying technology firstly. Then, the phase formation and bonding strength of ZrO2/HA composite coatings were analyzed. Finally, the friction and wear properties of ZrO2/HA composite coatings in bovine serum lubrication environment were investigated with UMT-3 pin-disk wear tester, the morphologies of wear surfaces of coatings were observed and the wear mechanisms were analyzed. The results show that the main phase of HA coatings are HA, the ZrO2 in 15wt% ZrO2/HA composite coating and 30wt% ZrO2/HA composite coating exists as cubic phase formation and the diffraction peak intensities are higher than that of HA. As the ZrO2 content increasing, the bonding strength of coatings increases significantly. The ZrO2/HA composite coatings have superior wear resistance and lower friction coefficients compared with those of pure HA coating. The wear mechanisms of pure HA coating are ploughing and abrasive wear primarily, while the wear mechanisms of 15wt% ZrO2/HA composite coating and 30wt% ZrO2/HA composite coating are brittle spalling wear. 国家自然科学基金(51105339,51275471);中国博士后科学基金(2013M540498)

References

[1]  Zhou H M, Zeng L, Ying D Q, et al. BG/BG-FHA composite coatings prepared by electrophoretic deposition method[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 194-199 (in Chinese). 周宏明, 曾麟, 易丹青, 等. 电泳沉积制备BG/BG-FHA复合涂层[J]. 复合材料学报, 2011, 28(6): 194-199.
[2]  Zheng X B, Xie Y T. Progress on biomedical ceramic coatings prepared by thermal spraying[J]. Journal of Inorganic Materials, 2013, 28(1): 12-20.
[3]  Webster T J, Ergun C, Doremus R H, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000, 21(17): 1803-1810
[4]  Kuo M C, Yen S K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature[J]. Materials Science and Engineering C, 2002, 20(1): 153-160.
[5]  Ji M R, Fu X Q, Zhang L, et al. Preparation and characterization of carbon nanotubes/hydroxyapatite composites[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 84-89 (in Chinese). 纪美茹, 傅小奇, 张雷, 等. 碳纳米管/羟基磷灰石复合材料的制备及表征[J]. 复合材料学报, 2012, 29(3): 84-89.
[6]  Shen D J, Cai J R, Li G L, et al. Effect of ultrasonic on microstructure and growth characteristics of micro-arc oxidation ceramic coatings on 6061 aluminum alloy[J]. Vacuum, 2014, 99: 143-148.
[7]  Luo R, Liu Z, Yan F, et al. The biocompatibility of hydroxyapatite film deposition on micro-arc oxidation Ti6Al4V alloy[J]. Applied Surface Science, 2013, 266: 57-61.
[8]  Yugeswaran S, Yoganand C P, Kobayashi A, et al. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9: 22-33.
[9]  Yuan M, Chen P H, Jiang H L, et al. The research progress of zirconia ceramics toughening method[J]. Jiangxi Chemical Industry, 2013(1): 1-6. 袁明, 陈萍华, 蒋华麟, 等. 氧化锆陶瓷增韧方法的研究进展[J]. 江西化工, 2013(1): 1-6.
[10]  Morks M F, Kobayashi A, Fahim N F. Abrasive wear behavior of sprayed hydroxyapitite coatings by gas tunnel type plasma spraying[J]. Wear, 2007, 262(1-2): 204-209.
[11]  Zhai Q, Zhao S, Wang X H, et al. Synthesis and characterization of bionic nano-silicon-substituted hydroxyapatite[J]. Journal of Inorganic Materials, 2013, 28(1): 58-62.
[12]  Peng J R, Li Z. Progress in application research of hydroxyapatite[J]. China Non-Metallic Mining Industry Herald, 2005(2): 12-15 (in Chinese). 彭继荣, 李珍. 羟基磷灰石的应用研究进展[J]. 中国非金属矿工业导刊, 2005(2): 12-15.
[13]  Groot K, Geesink R, Klein C, et al. Plasma sprayed coating of hydroxyapatite[J]. Journal of Biomedical Materials Research, 1987, 21(12): 1375-1387.
[14]  Huang Z Y, Li P, Liu R F, et al. Fabrication and bioactivity of porous hydroxyapatite coating on titanium[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 68-72 (in Chinese). 黄紫洋, 李鹏, 刘榕芳, 等. 钛涂覆多孔羟基磷灰石涂层的制备及其生物活性[J]. 复合材料学报, 2010, 27(5): 68-72.
[15]  Khalid M, Mujahid M, Khan A N, et al. Effect of arc current on microstructure, texturing and wear behavior of plasma sprayed CaZrO3 coatings[J]. Ceramics International, 2013, 39(3): 2293-2302.
[16]  Wen S Z, Huang P. Tribological principle [M]. Beijing: Tsinghua University Press, 2012: 302-304 (in Chinese). 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2012: 302-304.
[17]  Cizek J, Khor K A, Prochazka Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite[J]. Materials Science and Engineering: C, 2007, 27(2): 340-344.
[18]  Singh G, Singh S, Prakash S. Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy[J]. Surface and Coatings Technology, 2011, 205(20): 4814-4820.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133