全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

三向受压下单向复合材料层板破坏的细观力学分析
Micro-mechanics analysis of damage for unidirectional composite laminates under tri-axial compression

DOI: 10.13801/j.cnki.fhclxb.20160706.001

Keywords: 复合材料,细观力学,失效准则,纤维折断,静水压力
composites
,micro-mechanics,failure criteria,fiber kinking,hydrostatic pressure

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  HINTON M J, SODEN P D. Predicting failure in composite laminates:The background to the exercise[J]. Composites Science and Technology, 1998, 58(7):1001-1010.
[2]  SUN W, VASSILOPOULOS A P, KELLER T. Experi-mental investigation of kink initiation and kink band forma-tion in unidirectional glass fiber-reinforced polymer specimens[J]. Composite Structures, 2015, 130:9-17.
[3]  RABINOWITZ S, WARD I M, PARRY J S C. The effect of hydrostatic pressure on the shear yield behaiour of polymers[J]. Journal of Materials Science, 1970, 5(1):29-39.
[4]  BIRCH F. The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan's theory of finite strain[J]. Journal of Applied Physics, 1938, 9(4):279-288.
[5]  KADDOUR A S, HINTON M J. Input data for test cases used in benchmark triaxial failure theories of composites[J]. Journal of Composite Materials, 2012, 46(19-20):2295-2312.
[6]  HANSEN A C, NELSON E E, KENIK D J. A comparison of experimental data with multicontinuum failure simulations of composite laminates subjected to tri-axial stresses[J]. Journal of Composite Materials, 2013, 47(6-7):805-825.
[7]  DEUSCHLE H M, PUCK A. Application of the puck failure theory for fibre reinforced composites under 3D-stress:Comparison with experimental results[J]. Journal of Composite Materials, 2013, 47(6-7):827-846.
[8]  PINHO S T, VYAS G M, ROBINSON P. Material and structural response of polymer-matrix fibre-reinforced compo-sites:Part B[J]. Journal of Composite Materials, 2013, 47(6-7):679-696.
[9]  KRESS G. Examination of Hashin's failure criteria for part B of the Second World-Wide Failure Exercise:Comparison with test data[J]. Journal of Composite Materials, 2013, 47(6-7):867-891.
[10]  CARRERE N, LAURIN F, MAIRE J F. Micromechanical-based hybrid mesoscopic 3D approach for non-linear pro-gressive failure analysis of composite structures[J]. Journal of Composite Materials, 2012, 47(19-20):2389-2415.
[11]  CUNTZE R G. Comparison between experimental and theoretical results using Cuntze's "failure mode concept" model for composites under triaxial loadings-Part B of the second worldwide failure exercise[J]. Journal of Composite Materials, 2013, 47(6-7):893-924.
[12]  BROWN H C, LEE H L, CHAMIS C C. Fiber shape effects on metal matrix composite behavior[R]. NASA TM-106067, 1992.
[13]  MAYES S J, HANSEN A C. Composite laminate failure analysis using multicontinuum theory[J]. Composites Science & Technology, 2004, 64(3):379-394.
[14]  HUANG Z M, ZHOU Y X. Correlation of the bridging model predictions for triaxial failure strengths of composites with experiments[J]. Journal of Composite Materials, 2013, 47(6-7):697-731.
[15]  HUANG Y, JIN C, HA S K. Strength prediction of triaxially loaded composites using a progressive damage model based on micro-mechanics of failure[J]. Journal of Composite Materials, 2013, 47(6-7):777-792.
[16]  HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A, 2001, 32(2):143-172.
[17]  HUANG Z M. Micromechanical prediction of ultimate streng-th of transverse isotropic fibrous composites[J]. International Journal of Solids and Structures, 2001, 38(22-23):4147-4172.
[18]  HUANG Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads[J]. Composites Science and Technology, 2004, 64(3-4):395-448.
[19]  张博明, 唐占文, 刘长喜. 基于细化单胞模型的复合材料层合板强度预报方法[J]. 复合材料学报, 2013, 30(1):201-209. ZHANG B M, TANG Z W, LIU C X. Perdiction for failure envelopes of composite laminates based on refined generalized methods of cells[J]. Acta Materiae Compositae Sinica, 2013, 30(1):201-209(in Chinese).
[20]  李星, 关志东, 刘璐, 等. 复合材料跨尺度失效准则及其损伤演化[J]. 复合材料学报, 2013, 30(2):152-158. Li X, GUAN Z D, LIU L, et al. Composite multiscale failure criteria and damage evolution[J]. Acta Materiae Compositae Sinica, 2013, 30(2):152-158(in Chinese).
[21]  LI S. On the unit cell for micromechanical analysis of fibre-reinforced composites[J]. Proceedings of the Royal Society A, 1999, 455(1983):815-838.
[22]  LI S. General unit cells for micromechanical analyses of unidirectional composites[J]. Composites Part A:Applied Science & Manufacturing, 2001, 32(6):815-826.
[23]  LI S, WONGSTO A. Unit cells for micromechanical analyses of particle reinforced composites[J]. Mechanics of Materials, 2004, 36(7):543-572.
[24]  LI S. Boundary conditions for unit cells from periodic microstructures and their implications[J]. Composites Science & Technology, 2008, 68(9):1962-1974.
[25]  LI S, ZHOU C, YU H, et al. Formulation of a unit cell of reduced size for plain weave textile composites[J]. Computational Materials Science, 2011, 50(5):1770-1780.
[26]  HILL R. The mathematical theory of plasticity[M]. Oxford:Oxford University Press, 1950.
[27]  PUCK A. Calculating the strength of glass fibre/plastic lami-nates under combined load[J]. Kunstst German Plastics, 1969, 55:18-19.
[28]  PUCK A, SCHNEIDER W. On failure mechanisms and fai-lure criteria of filament wound glass-fibre/resin composites[J]. Plastics & Polymers, 1969, 37:33-44.
[29]  PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking:Part I-Deve-lopment[J]. Composite Part A, 2006, 37:63-73.
[30]  PINHO S T, ROBINSON P, IANNUCCI L. Fracture toughness of the tensile and compressive fiber failure modes in laminated composites[J]. Composites Science and Techno-logy, 2006, 66(13):2069-2079.
[31]  WRONSKI A S, PARRY T V. Compressive failure and kinking in uniaxially aligned glass-resin composite under superposed hydrostatic pressure[J]. Journal of Materials Science, 1982, 17(12):3656-3662.
[32]  HINE P J, DUCKETT R A, KADDOUR A S. The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites[J]. Composites Part A, 2015, 36(2):279-289.
[33]  SHIN E S, PAE K D. Effects of hydrostatic pressure on in-plane shear properties of graphite/epoxy composites[J]. Journal of Composite Materials, 1992, 26(6):828.
[34]  SODEN P D, HINTON M J, KADDOUR A S. A compa-rison of the predictive capabilities of current failure theories for composite laminates[J]. Composites Science and Tech-nology, 1998, 58(7):1225-1254.
[35]  HINTON M J, KADDOUR A S, SODEN P D. A compa-rison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence[J]. Composites Science and Technology, 2002, 62(12-13):1725-1797.
[36]  SODEN P D, HINTON M J, KADDOUR A S. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates:Failure exercise benchmark data[J]. Composites Science and Technology, 2002, 62(12-13):1489-1514.
[37]  SCHULTE K. World Wide Failure Exercise on failure predic-tion in composites[J]. Composites Science and Technology, 2002, 62(12-13):1479.
[38]  HINTON M J, KADDOUR A S, SODEN P D. A further assessment of the predictive capabilities of current failure theories for composite laminates:Comparison with experi-mental evidence[J]. Composites Science and Technology, 2004, 64(3-4):549-588.
[39]  KADDOUR A S, HINTON M J. Maturity of 3D failure criteria for fibre-reinforced composites:Comparison between theories and experiments-Part B of WWFE-II[J]. Journal of Composite Materials, 2013, 47(6-7):925-966.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133