|
- 2017
超低温介质对碳纤维增强树脂基复合材料力学性能的影响
|
Abstract:
[1] | BECHEL V T, NEGILSKI M, JAMES J. Limiting the permeability of composites for cryogenic applications[J]. Composites Science and Technology, 2006, 66(13):2284-2295. |
[2] | BECHEL V T, CAMPING J D, KIM R Y. Cryogenic/elevated temperature cycling induced leakage paths in PMCs[J]. Composites Part B:Engineering, 2005, 36(2):171-182. |
[3] | HEYDENREICH R. Cryotanks in future vehicles[J]. Cryogenics, 1998, 38(1):125-130. |
[4] | ALBRITTON N, YOUNG W. Cryogenic evaluation of epoxy bond strength[J]. Cryogenics, 1996, 36(9):713-716. |
[5] | ZHAO F, HUANG Y D. Improved interfacial properties of carbon fiber/epoxy composites through grafting polyhedral oligomeric silsesquioxane on carbon fiber surface[J]. Materials Letters, 2010, 64(24):2742-2744. |
[6] | NAWAB Y, JACQUEMINB F, CASARI P, et al. Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates[J]. Composites Part B:Engineering, 2013, 50:144-149. |
[7] | HEYDENREICH H R. Cryotanks in future vehicles[J]. Cryogenics, 1998, 38(1):125-130. |
[8] | YOKOZEKI T, OGASAWARA T, AOKI T, et al. Experimental evaluation of gas permeability through damaged composite laminates for cryogenic tank[J]. Composites Science and Technology, 2009, 69(9):1334-1340. |
[9] | 全国纤维增强塑料标准化技术委员会. 定向纤维增强塑料拉伸性能试验方法:GB/T 3354-1999[S]. 北京:中国标准出版社, 1999. National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Test method for tensile properties of oriented fiber reinforced plastics:GB/T 3354-1999[S]. Beijing:China Standards Press, 1999(in Chinese). |
[10] | 中华人民共和国标准化管理委员会. 纤维增强塑料弯曲性能试验方法:GB/T 1449-2005[S]. 北京:中国标准出版社, 2005. Standardization Administration of the People's Republic of China. Fibre-reinforced plastic composites-Determination of flexural properties:GB/T 1449-2005[S]. Beijing:China Standards Press, 2005(in Chinese). |
[11] | SURENDRA KUMAR M, SHARMA N, RAY B C. Microstructural and mechanical aspects of carbon/epoxy composites at liquid nitrogen temperature[J]. Journal of Reinforced Plastics and Composites, 2009, 28(16):2013-2023. |
[12] | EMMERICH F G. Young's modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon. 2014, 79(1):274-293. |
[13] | PRAVEEN R S, JACOB S, MURTHY C R L, et al. Hybridization of carbon-glass epoxy composites:An approach to achieve low coefficient of thermal expansion at cryogenic temperatures[J]. Cryogenics, 2011, 51(2):95-104. |
[14] | BAI J, KOU H C, WANG J, et al. Strain rate response of a Ti-based metallic glass composite at cryogenic temperature[J]. Materials Letters, 2014, 117:228-230. |
[15] | 黄传军, 张以河, 付绍云, 等. SiO2/环氧树脂基纳米复合材料的室温和低温力学性能[J]. 复合材料学报, 2004, 21(4):77-81. HUANG C J, ZHANG Y H, FU S Y, et al. Mechanical properties of epoxy composites filled with SiO2 nano-particles at room and cryogenic temperatures[J]. Acta Materiae Compositae Sinica, 2004, 21(4):77-81(in Chinese). |
[16] | KANG S G, KIM M G, PARK S W, et al. Damage analysis of a type 3 cryogenic propellant tank after LN2 storage test[J]. Journal of Composite Materials, 2008, 42(10):975-992. |
[17] | TAYLOR A H, JACKSON L R, CERRO J A. Analytical study of reusable flight-weight cryogenic propellant tank-design[J]. Journal of Spacecraft and Rockets, 1986, 23(2):149-157. |
[18] | 于建, 晏飞. 可重复使用运载器复合材料低温贮箱应用研究[J]. 火箭推进, 2009, 35(6):19-22+36. YU J, YAN F. Study on application of composite cryogenic tank for reusable launch vehicle[J]. Journal of Rocket Propulsion, 2009, 35(6):19-22+36(in Chinese). |
[19] | 沈小军, 孟令轩, 付绍云. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1):21-26. SHEN X J, MENG L X, FU S Y. Cryogenic mechanical properties of epoxy composites synergistically reinforced by grapheme-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1):21-26(in Chinese). |
[20] | NAIR A, ROY S. Modeling of permeation and damage in graphite/epoxy laminates for cryogenic tanks in the presence of delaminations and stitch cracks[J]. Composites Science and Technology, 2007, 67(11-2):2592-2605. |
[21] | KUMAR M S, SHARMA N, RAY B C. Structural integrity of glass/polyester composites at liquid nitrogen temperature[J]. Journal of Reinforced Plastics and Composites, 2009, 28(11):1297-1304. |
[22] | TAKEDA T, FAN W, FENG Q P, et al. Cryogenic mechanical properties of woven glass/epoxy composites modified with multi-walled carbon nanotube and n -butyl glycidyl ether under tensile static and cyclic loadings[J]. Cryogenics, 2013, 58:33-37. |
[23] | RAY B C. Loading rate sensitivity of glass fiber-epoxy composite at ambient and sub-ambient temperatures[J]. Journal of Reinforced Plastics and Composites, 2006, 25(3):329-333. |
[24] | SANADA K, SANGA H, SHINDO Y. Cryogenic tensile and fracture properties of carbon nanofiber/poly-dicyclopentadiene composites fabricated by ultrasonic method[J]. Journal of Composite Materials, 2012, 46(12):1431-1438. |
[25] | SHINDO Y, TAKEDA T, NARITA F. Mechanical response of nonwoven polyester fabric/epoxy composites at cryogenic temperatures[J]. Cryogenics, 2012, 52(10):564-568. |
[26] | RAY B C. Effects of thermal and cryogenic conditionings on mechanical behavior of thermally shocked glass fiber-epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2005, 24(7):713-717. |
[27] | HARPER L T, TURNER T A, WARRIOR N A, et al. Characterisation of random carbon fibre composites from a directed fibre preforming process:Analysis of microstructural parameters[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):2136-2147. |
[28] | GAO S L, MADER E, ZHANDAROV S F. Carbon fibers and composites with epoxy resins:Topography, fractography and interphases[J]. Carbon, 2004, 42(3):515-529. |
[29] | SHINDO Y, TAKANO S, HORIGUCHI K, et al. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension-tension cycling[J]. Cryogenics, 2006, 46(11):794-798. |
[30] | SáNCHEZ-SáEZ S, BARBERO E, NAVARRO C. Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts[J]. Composite Structures, 2008, 85(3):226-232. |
[31] | 付绍云, 杨庆生, 陈振坤, 等. 多壁纳米碳管增强环氧树脂基复合材料的低温力学性能研究[C]//中国力学学会学术大会'2009论文摘要集. 郑州:中国力学学会, 2009:102. FU S Y, YANG Q S, CHEN Z K, et al. Cryogenic mechanical properties of MWCNT/epoxy composites[C]//The Chinese Conference on Theoretical and Applied Mechanics'2009 Abstract Book. Zhengzhou:Chinese Society of Theoretical and Applied Mechanics, 2009:102(in Chinese). |
[32] | 高阳, 汤炜, 王立峰, 等. 适于低温应用的玻璃纤维/聚醚酰亚胺复合材料[J]. 宇航材料工艺, 2009, 39(6):42-44. GAO Y, TANG W, WANG L F, et al. Glass fiber reinforced polyethrimde used in cryogenic temperature environmen[J]. Aerospace Materials & Technology. 2009, 39(6):42-44(in Chinese). |
[33] | 王荣国, 赫晓东, 胡照会, 等. 超薄金属内衬复合材料压力容器的结构分析[J]. 复合材料学报, 2010, 27(4):131-138. WANG R G, HE X D, HU Z H, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica, 2010, 27(4):131-138(in Chinese). |
[34] | HIGUCHI K, et al. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket[J]. Acta Astronaut, 2005, 57(2-8):432-437. |
[35] | MA X, YUAN C, LIU X. Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing[J]. Materials, 2013, 7(1):75-84. |