全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

氧化石墨烯对玄武岩织物/酚醛树脂复合材料性能的影响
Influence of graphene oxide on mechanical properties of basalt fabric reinforced phenolic resin

DOI: 10.13801/j.cnki.fhclxb.20170321.003

Keywords: 氧化石墨烯,表面改性,玄武岩纤维,力学性能,复合材料
graphene oxide (GO)
,surface modification,basalt fiber,mechanical properties,composite

Full-Text   Cite this paper   Add to My Lib

Abstract:

将偶联剂改性的氧化石墨烯(GO)添加到酚醛树脂中,制备了GO改性的玄武岩织物/酚醛树脂复合材料板材。采用三点弯曲、短梁剪切和落锤冲击试验方法,研究了GO的含量对复合材料弯曲性能、层间剪切强度(ILSS)和冲击性能的影响。结果表明,GO的加入显著提高了玄武岩织物/酚醛树脂复合材料的力学性能,随着GO含量的增加,复合材料的力学性能先增大后减小;相对于空白样,当GO的含量为2wt%时,弯曲强度和弯曲模量分别提高了39%和25%;ILSS提高了43%;当GO的含量为1wt%时,冲击破坏载荷增加40%,破坏吸收能量增加60%。 The coupling agent modified graphene oxide (GO) was added into phenolic resin to prepare basalt fabric reinforced phenolic composites. The influence of graphene oxide mass fraction on the mechanical and impact properties of basalt fabric reinforced phenolic composites was investigated. The results show that the addition of GO increases the flexural strength, modulus and interlaminar strength (ILSS) of the basalt fabric reinforced phenolic composites. The maximum flexural strength and modulus are obtained at the GO mass fraction of 2wt%, which is increased by nearly 39% and 25%, respectively. The maximu mimpact load and damage absorbed energy increase by 40% and 60%, respectively, after adding 1wt% GO. 深圳市未来产业专项基金(JCYJ20140421172318586)

References

[1]  GARIMA M, VIVEK D, RHEE K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21(1):11-25.
[2]  叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能研究[J]. 复合材料学报, 2014, 31(6):1402-1408. YE G R, YAN Y W, CAO H L. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6):1402-1408(in Chinese).
[3]  蒋一鸣, 林起浪, 杨友结, 等. 氰酸酯树脂/氧化石墨烯纳米复合材料的制备及表征[J]. 高分子材料科学与工程, 2012, 28(3):134-136. JIANG Y M, LIN Q L, YANG Y J, et al. Preparation and characterization of cyanate esterresin/grapheneoxide nanocomposites[J] Polymer Materials Science & Engineering, 2012, 28(3):134-136(in Chinese).
[4]  CAI D Y, JIN J, YUSOH K, et al. High performance polyurethane/functionalized grapheme nanocomposites with improved mechanical and thermal properties[J]. Composites Science and Technology, 2012, 72(6):702-707.
[5]  胡显奇. 连续玄武岩纤维在军工及民用领域的应用[J]. 高科技纤维与应用, 2005, 30(6):7-13. HU X Q. The application of the CBF in war industry & civil fields[J]. Hi-Tech Fiber & Application, 2005, 30(6):7-13(in Chinese).
[6]  胡显奇. 我国应大力发展纯天然的连续玄武岩纤维(CBF)[J]. 新材料产业, 2006(6):65-70. HU X Q. China should strive to develop natural continuous basalt fiber(CBF)[J]. Advanced Materials Industry, 2006(6):65-70(in Chinese).
[7]  许小芳, 申世杰, 刘亚兰, 等. 玄武岩纤维增强环氧树脂复合材料复合机制[J]. 复合材料学报, 2011, 28(4):99-106. XU X F, SHEN S J, LIU Y L, et al. Mechanism of basalt fiber reinforced epoxy[J]. Acta Materiae Compositae Sinica, 2011, 28(4):99-106(in Chinese).
[8]  李想, 程广宜. 玄武岩纤维增强酚醛树脂复合材料烧蚀性能研究[J]. 材料开发与应用, 2009, 24(5):36-39. LI X, CHENG G Y. Ablation performance of basalt fiber reinforced phenolic resin composite[J]. Development and Application of Materials, 2009, 24(5):36-39(in Chinese).
[9]  中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法:GB/T 1449-2005[S]. 北京:中国标准出版社, 2004. Standardization Administration of the People's Republic of China. Fibrereinforced plastic composites-Determination of flexural properties:GB/T1449-2005[S]. Beijing:Standards Press of China, 2004(in Chinese).
[10]  中国工业和信息化部. 纤维增强塑料短梁法测定层间剪切强度:JC/T 773-2010[S]. 北京:中国标准出版社, 2010. Ministry of Industry and Information Technology of the People's Republic of China. Fibre reinforced plastic composites-Determination of apparent interlaminar shear strength by short-beam method:JC/T 773-2010[S]. Beijing:Standards Press of China, 2010(in Chinese).
[11]  American Society for Testing and Materials. Standard test method for high speed puncture properties of plastics using load and displacement sensors:ASTM D3763[S]. US:ASTM International, 2015.
[12]  METIN S, NUMAN B B, ONUR S. An experimental investigation on the impact behavior of hybrid composite plates[J]. Composite Structures, 2010, 92(5):1256-1262.
[13]  NATALI M, KENNY J, TORRE L. Phenolic matrix nanocomposites based on commercial grade resols:Synthesis and characterization[J]. Composites Science and Technology, 2010, 70(4):571-577.
[14]  关苏军, 万春风, 汪丽娜, 等. 玄武岩纤维增强木塑复合材料的力学性能[J]. 复合材料学报, 2011, 28(5):162-167. GUAN S J, WAN C F, WANG L N, et al. Mechanical properties of basalt fiber reinforced wood-plastic composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5):162-167(in Chinese).
[15]  赵庆新, 董进秋, 潘慧敏, 等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125. ZHAO Q X, DONG J Q, PAN H M, et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2010, 27(6):120-125(in Chinese).
[16]  张俊华, 李锦文, 李传校, 等. 连续玄武岩纤维平纹布增强硼酚醛树脂复合材料研究[J]. 工程塑料应用, 2008, 36(12):17-19. ZHANG J H, LI J W, LI C X, et al. Research on CBF resinforced born-phenolic resin composites[J]. Engineering Plastics Application, 2008, 36(12):17-19(in Chinese).
[17]  张文文, 刘秀军, 李同起, 等. 氧化石墨烯/聚合物复合材料的研究进展[J]. 化工新型材料, 2015, 43(1):12-14. ZHANG W W, LIU X J, LI T Q, et al. Research progress on graphene oxide/polymer composites[J]. New Chemical Materials, 2015, 43(1):12-14(in Chinese).
[18]  李伟, 周保全, 李中辉, 等. 石墨烯改性热固性树脂及其纤维复合材料的研究进展[J]. 玻璃钢/复合材料, 2014(11):96-101. LI W, ZHOU B Q, LI Z H, et al. Progress of the modification of thermosetting resins and their fiber composites by using grapheme[J]. Fiber Reinforced Plastic Composites, 2014(11):96-101(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133