|
- 2016
HZSM-5分子筛负载SrTiO3光催化降解活性艳红X-3B
|
Abstract:
采用溶胶-凝胶法制备HZSM-5分子筛负载SrTiO3,对其进行XRD、FTIR和N2吸附-脱附表征,研究负载对活性艳红X-3B光催化降解过程的影响。通过分析降解液的FTIR谱图、紫外-可见光谱和总有机碳(TOC)数据,对活性艳红X-3B的光催化降解过程进行了探讨。结果表明:催化剂的主要成分为钙钛矿结构SrTiO3,负载对SrTiO3晶粒尺寸几乎没有影响。纯SrTiO3没有明显的孔结构,负载后样品的比表面积和孔隙主要由HZSM-5提供。负载之后催化剂的降解活性显著提高,30% SrTiO3/HZSM-5对活性艳红X-3B染料溶液的脱色和TOC去除速率最快。 SrTiO3 was supported on HZSM-5 molecular sieve by sol-gel method. XRD, FTIR, and N2 adsorption-desorption measurements were carried out to study the influences of supporting on photocatalytic degradation process of reactive brilliant red X-3B. The processes in photocatalytic degradation of reactive brilliant red X-3B were discussed after analyzing the data of FTIR spectra, ultraviolet-visible spectroscopy, and total organic carbon (TOC) data of the solutions during degradation. The results show that the photocatalysts are mainly composed of perovskite SrTiO3. Crystallite size of SrTiO3 has nearly no change after supporting. Pure SrTiO3 does not have apparent porous structure, so that specific surface area and pores of the supported samples are mainly provided by HZSM-5. Photocatalytic activity of the supported catalysts is obviously improved with the fastest decoloration and TOC removal rates on 30% SrTiO3/HZSM-5 for reactive brilliant red X-3B. 国家自然科学基金青年基金(51504154);辽宁省教育厅科技研究一般项目(L2014081);辽宁省自然科学基金(2015020186)
[1] | FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2000, 1(1):1-21. |
[2] | 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2 复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):355-361. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):355-361(in Chinese). |
[3] | ARCONADA N, DURA A, SUAREZ S, et al. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel[J]. Applied Catalysis B:Environmental, 2009, 86(1-2):1-7. |
[4] | ZHAO Y, ZHANG X T. Enhanced photocatalytic activity of hierarchically micro/nano-porous TiO2 films[J]. Applied Catalysis B:Environmental, 2008, 83(1-2):24-29. |
[5] | GUO P, WANG X S, GUO H C. TiO2/Na-HZSM-5 nano-composite photocatalyst:Reversible adsorption by acidsites promotes photocatalytic decomposition of methyl orange[J]. Applied Catalysis B:Environmental, 2009, 90(3-4):677-687. |
[6] | ZHANG W J, BI F F, YU Y, et al. Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5[J]. Journal of Molecular Catalysis A:Chemical, 2013, 372:6-12. |
[7] | TODOROVSKY D S, TODOROVSKA R V, MILANOVA M M, et al. Deposition and characterization of La2Ti2O7 thin films via spray pyrolysis process[J]. Applied Surface Science, 2007, 253(10):4560-4565. |
[8] | BATART A, SAITZEK S, FERRI A, et al. Microstructure and nanoscale piezoelectric/ferroelectric properties in Ln2Ti2O7 (Ln=La, Pr and Nd) oxide thin films grown by pulsed laser deposition[J]. Thin Solid Films, 2014, 553:71-75. |
[9] | GARCíA-LóPEZ E, MARCì G, MEGNA B, et al. SrTiO3-based perovskites:Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar irradiation[J]. Journal of Catalysis, 2015, 321:13-22. |
[10] | KIMIJIMA T, KANIE K, NAKAYA M, et al. Solvothermal synthesis of SrTiO3 nanoparticles precisely controlled in surface crystal planes and their photocatalytic activity[J]. Applied Catalysis B:Environmental, 2014, 144:462-467. |
[11] | ZHANG W J, DU L, BI F F, et al. A novel SrTiO3/HZSM-5 photocatalyst prepared by sol-gel method[J]. Materials Letters, 2015, 157:103-105. |
[12] | LI Z Z, MAO L Q, ZHANG S L, et al. Studies on photocatalytic decoloration and degradation processes of reactive brilliant red X-3B aqueous solution[J]. Photographic Science and Photochemistry, 2004, 22(5):383-390. |
[13] | LI Y, LU S, ZHU S F. Experimental study on treatment of active red printing and dyeing wastewater with fenton agent[J]. Environmental Science & Technology of China, 2008, 31(3):88-90. |
[14] | SAKAI N, FUJISHIMA A, WATANABE T, et al. Quantitative evaluation of the photo induced hydrophilic conversion properies of TiO2 thin film surfaces by the reciprocal of contact angle[J]. Journal of Physics Chemistry B, 2003, 107(4):1028-1035. |
[15] | MAO L J, YANG J J, GUO Q H, et al. Studies on photochemical and photocatalytic synergistic decoloration of brilliant red X-3B solution[J]. Chinese Journal of Catalysis, 2001, 22(2):181-184. |
[16] | LEI Y M, SHEN Z M, HUANG R H, et al. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation[J]. Journal of Water Research, 2007, 41(11):2417-2426. |
[17] | BOYE B, DIENG M M, BRILLAS E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods[J]. Environmental Science and Technology, 2002, 36(13):3030-3035. |
[18] | KARKMAZ M, PUZENAT E, GUILLARD C, et al. Photocatalytic degradation of the alimentary azo dye amaranth mineralization of the azo group to nitrogen[J]. Applied Catalysis B:Environmental, 2004, 51(3):183-194. |
[19] | LóPEZ S M, HIDALGO M C, NAVíO J A. Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation[J]. Applied Catalysis A:General, 2011, 404(1-2):59-67. |
[20] | CHATTERJEE D, DASGUPTA S. Visible light induced photocatalytic degradation of organic pollutants[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2005, 6(2-3):186-205. |
[21] | XUE H, ZHANG Y W, XU J, et al. Facile one-pot synthesis of porous Ln2Ti2O7 (Ln=Nd, Gd, Er) with photocatalytic degradation performance for methyl orange[J]. Catalysis Communications, 2014, 51:72-76. |
[22] | WU F, HUA H L, DENG N S. Expression of degradation courses of three azo dyes by UV-VIS spectrum[J]. Environmental Chemistry, 2000, 19(4):348-351. |
[23] | WU F, DENG N S, HUA H L. Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions[J]. Chemosphere, 2011, 41(8):1233-1238. |
[24] | LEI Y M, SHEN Z M, YU Q C, et al. Degradation mechanism of acid red B by cathodic oxidation[J]. Environmental Science, 2005, 26(5):115-119. |