全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

阻抗渐变低介电BaTiO3/PVDF复合纤维膜的设计与电纺制备
Design and fabrication of low-dielectric BaTiO3/PVDF composite fibrous mat with impedance gradient by electrospinning

DOI: 10.13801/j.cnki.fhclxb.20151027.002

Keywords: 低介电,静电纺丝,聚偏氟乙烯,钛酸钡,复合材料
low-dielectric
,electrospinning,polyvinylidene-fluoride,BaTiO3,composite

Full-Text   Cite this paper   Add to My Lib

Abstract:

阻抗渐变材料在医用可穿戴设备中起着重要作用。为了实现不同材料之间的相互匹配特性,低介电阻抗渐变材料的研究尤为重要。利用静电纺丝的方法,设计制备了具有阻抗渐变性的低介电钛酸钡(BaTiO3)/聚偏氟乙烯(PVDF)复合纤维膜。结果表明:BaTiO3纳米粒子可在纤维网络中均匀分布,通过调节其质量分数,能够有效调节BaTiO3/PVDF复合纤维膜的介电常数在1~7的范围内,BaTiO3/PVDF复合纤维膜对不同的电场频率具有不敏感性。BaTiO3/PVDF复合纤维膜还具有良好的力学性能,能够有效满足可穿戴设备的材料需求。 Impedance gradient materials have played an important role in the medical wearable devices. For realizing the matching character between different materials, the research about low-dielectric materials with impedance gradient is particularly important. By means of the electrospinning, low-dielectric barium titanate (BaTiO3)/polyvinylidene-fluoride (PVDF) composite fibrous mat with impedance gradient was designed and prepared. The results show that the BaTiO3 nano-particles can distribute in the fiber uniformly. By adjusting the mass fraction of nano-particles, the dielectric constant of BaTiO3/PVDF composite fibrous mat can arrange from 1 to 7, and it is also insensible to the different frequencies of electric field. BaTiO3/PVDF composite fibrous mat possesses good mechanical property and can meet the requirements of the wearable device materials. 国家国际科技合作专项(2013DFA31770);国家自然科学基金(51373007,51003004);国家“973”计划(2010CB934700);北京市自然科学基金(2142019)

References

[1]  高永芳, 时家明. 一种双层吸波材料的制备与吸波特性研究[J]. 表面技术, 2010, 39(2): 93-95. GAO Y F, SHI J M. Design and research on absorbing properties of a kind of double-layer absorbing materials[J]. Surface Technology, 2010, 39(2): 93-95 (in Chinese).
[2]  李琳, 周振功, 张明福, 等. PST-PT/PVDF复合材料的制备及介电性能[J]. 复合材料学报, 2004, 21(3): 69-72. LI L, ZHOU Z G, ZHANG M F, et al. Preparation and properties of PST-PT/PVDF composite materials[J]. Acta Materiae Compositae Sinca, 2004, 21(3): 69-72 (in Chinese).
[3]  宋桂林, 杨枫, 王少祥, 等. 超导YBa2Cu3O7+δ/硅橡胶复合材料的压敏与介电特性[J]. 复合材料学报, 2009, 26(6): 48-53. SONG G L, YANG F, WANG S X, et al. Pressure sensitivity and dielectric properties of YBa2Cu3O7+δ/silicone rubber composite[J]. Acta Materiae Compositae Sinca, 2009, 26(6): 48-53 (in Chinese).
[4]  张传玲, 王瑶, 邓元, 等. Al片/PVDF介电复合材料的制备及性能[J]. 复合材料学报, 2012, 29(1): 69-72. ZHANG C L, WANG Y, DENG Y, et al. Preparation and dielectric properties of Al-flake/PVDF composites[J]. Acta Materiae Compositae Sinca, 2012, 29(1): 69-72 (in Chinese).
[5]  DEVARAJU N G, KIM E S, LEE B I. The synthesis and dielectric study of BaTiO3/polyimide nanocomposite films[J]. Microelectronic Engineering, 2005, 82(1): 71-83.
[6]  杨建, 赵文明, 王晓琳. 聚偏氟乙烯-稀释剂间介电常数差异对热致相分离法制膜微观结构的影响[J]. 高等学校化学学报, 2007, 28(12): 2413-2417. YANG J, ZHAO W M, WANG X L. Effect of difference of dielectric constants between polyvinylidene fluoride and diluent on the morphology of polyvinylidene fluoride memranes prepared by thermally induced phase separation[J]. Chemical Journal of Chinese University, 2007, 28(12): 2413-2417 (in Chinese).
[7]  HO P S, LEU J, LEE W W. Low dielectric constant materials for IC applications[M]. New York: Springer Science & Business, 2003: 14-17.
[8]  GREINER A, WENDORFF J H. Electrospinning: A fascinating method for the preparation of ultrathhin fibers[J]. Angewandte Chemie International Edition, 2007, 46(30): 5670-5703.
[9]  白帆, 吴俊涛, 龚光明, 等. 静电纺丝技术制备聚合物基中空结构材料[J]. 高等学校化学学报, 2013, 34(4): 751-759. BAI F, WU J T, GONG G M, et al. Fabrication of polymeric hollow structure by electrospinning[J]. Chemical Journal of Chinese Universities, 2013, 34(4): 751-759 (in Chinese).
[10]  LIU J Y, MIN Y, CHEN J Y, et al. Preparation of the ultra-low dielectric constant polyimide fiber membranes enabled by electrospinning[J]. Macromolecular Rapid Communications, 2007, 28(2): 215-219.
[11]  CHEN F, BERA D, BANERJEE S, et al. Low dielectric constant polyimide nanomats by electrospinning[J]. Polymers for Advanced Technologies, 2012, 23(6): 951-957.
[12]  SHARMA B, VERMA R, BAUR C, et al. Ultra low dielectric, self-cleansing and highly oleophobic POSS-PFCP aryl ether polymer composites[J]. Journal of Materials Chemistry C, 2013, 1(43): 7222-7227.
[13]  BEHLER K D, STRAVATO A, MOCHALIN V, et al. Nanodiamond-polymer composite fibers and coatings[J]. ACS Nano, 2009, 3(2): 363-369.
[14]  丁世敬, 葛德彪. 电磁吸波材料中的阻抗匹配条件[J]. 电波科学学报, 2009, 24(6): 1104-1108. DING J S, GE D B. Impedance matching condition of electromagnetic absorbing material[J]. Chinese Journal of Radio Science, 2009, 24(6): 1104-1108 (in Chinese).
[15]  SERAJI S, WU Y, FORBESS M, et al. Sol-gel-derived mesoporous silica films with low dielectric constants[J]. Advanced Materials, 2000, 12(22): 1695-1698.
[16]  逄淑宁. 可穿戴设备技术产业发展研究[J]. 电信网技术, 2014, 5(5): 21-24. PANG S N . Study on technology and industry development of wearable devices[J]. Telecommunications Network Technology, 2014, 5(5): 21-24 (in Chinese).
[17]  滕晓菲, 张元亭. 移动医疗: 穿戴式医疗仪器的发展趋势[J]. 中国医疗器械杂志, 2006, 30(5): 330-340. TENG X F, ZHANG Y T. M-health: Trends in wearable medical devices[J]. Chinese Journal of Medical Instrumentation, 2006, 30(5): 330-340 (in Chinese).
[18]  DANG Z M, LIN Y Q, XU H P, et al. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability[J]. Advanced Functional Materials, 2008, 18(10): 1509-1517.
[19]  WANG G S, DENG Y, XIANG Y, et al. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composite with enhanced dielectric properties[J]. Advanced Functional Materials, 2008, 18(17): 2584-2592.
[20]  戚远慧, 朱永军, 韦亮强, 等. 聚偏氟乙烯/钛酸钡高介电复合材料研究进展[J]. 塑料工业, 2014, 42(6): 4-7 QI Y H, ZHU Y J, WEI L Q, et al. Research progress in PVDF/BaTiO3 high dielectric composites[J]. China Plastics Industry, 2014, 42(6): 4-7 (in Chinese).
[21]  RAO Y, TAKAHASHI A, WONG C P. Di-block copolymer surfactant study to optimize filler dispersion in high dielectric constant polymer-ceramic composite[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(11): 1113-1116.
[22]  MAEX K, BAKLANOV M R, SHAMIRYAN D, et al. Low dielectric constant materials for microelectronics[J]. Journal of Applied Physics, 2003, 93(11): 8793-8841.
[23]  黄娆, 刘之景. 新型低介电常数材料研究进展[J]. 纳米材料与结构, 2003, 40(9): 11-19. HUANG R, LIU Z J. Recent research and development of low dielectric constant materials[J]. Nanomaterial & Structure, 2003, 40(9): 11-19 (in Chinese).
[24]  龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759. GONG G M, WU J T, JIANG L. Novel polyimide materials produced by electrospinning[J]. Progress in Chemistry, 2011, 23(4): 750-759 (in Chinese).
[25]  LU X F, WANG C, WEI Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications[J]. Small, 2009, 5(21): 2349-2370.
[26]  LIU W Y, THOMOPOULOS S, XIA Y N. Electrospun nanofibers for regenerative medicine[J]. Advanced Healthcare Materials, 2012, 1(1): 10-25.
[27]  DANG Z M, WANG H Y, ZHANG Y H, et al. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposite prepared via the natural adsorption action of nanosized BaTiO3[J]. Macromolecular Rapid Communications, 2005, 26(14): 1185-1189.
[28]  王海燕, 党智敏. 钛酸钡/聚偏氟乙烯纳米复合材料的制备与性能研究[C]//2005年全国高分子学术论文报告会论文摘要集. 北京: 中国化学会高分子学科委员会, 2005: 522. WANG H Y, DANG Z M. Study on preparation and dielectric property of BaTiO3/PVDF composites[C]//National Polymer Academic Papers Report Abstract Set in 2005. Beijing: Chinese Chemical Society Polymer Science Committee, 2005: 522 (in Chinese).
[29]  刘福建, 韩冰, 曹洋, 等. 高温水热合成具有超低介电常数的规则介孔氧化硅材料[J]. 高等学校化学学报, 2012, 33(9): 1908-1914. LIU F J, HAN B, CAO Y, et al. Hydrothermal synthesis of ordered mesoporous silicas with extraordinarily ultra-low dielectric constants[J]. Chemical Journal of Chinese Universities, 2012, 33(9): 1908-1914 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133