|
- 2018
雷击冲击力作用下复合材料层合板动力学响应及损伤特性
|
Abstract:
采用基于连续介质损伤理论(CDM)的复合材料三维渐进损伤分析模型,以ABAQUS有限元分析软件为平台,结合VUMAT子程序,对雷击冲击力作用下的复合材料层合板进行了三维动力学分析,研究了雷击冲击力作用下层合板的动力学响应及损伤特性。结果表明,在雷击冲击力作用下,层合板做降幅振荡运动,冲击力做功与层合板内能和动能相互转换,同时伴随着黏性耗散能,冲击力做功大小可用雷电流库伦量与作用积分的函数表示;层合板损伤由外力做功大小决定,对于同种材料,基体、纤维及分层损伤分别存在不同的损伤能量临界值,当冲击力做功大于该值,层合板会产生对应的损伤;在相同边界支持条件下,冲击力总功最大值决定了不同损伤类型损伤状态变量的大小,与波形参数和峰值电流无关。 Using the constructed three-dimensional progressive damage degradation model for composite based on the theory of continuum damage mechanics (CDM), dynamic response and damage performance of composite laminate under the act of lightning strike impact force were analyzed through the platform of ABAQUS software and VUMAT subroutine. Analysis results indicate that under the act of lightning strike impact force, laminate displays oscillatory movement with amplitude decrease, and the work did by lightning strike impact force converts with internal energy and kinetic energy of laminate mutually, and accompanys with the consumed viscous dissipation energy, additionally, it can be expressed as a function of electrical charge and action integral of lightning current. Mechanical impact damage degree of laminate depends on the work due to lightning strike impact force, for the same material, matrix, fiber and delamination damage exist different corresponding critical damage external energy, respectively. When the work did by lightning strike impact force higher than the critical damage energy, laminate will occur corresponding damage form. With the same boundary support condition, the maximum value of fiber, matrix and delamination damage state variables depend on total work did by lightning strike impact force, and have nothing to do with lightning current parameters. 国家自然科学基金(51477132)
[1] | 付尚琛, 周颖慧, 石立华, 等. 碳纤维增强复合材料雷击损伤实验及电-热耦合仿真[J]. 复合材料学报, 2015, 32(1):250-259. FU S C, ZHOU Y H, SHI L H, et al. Experimental and electrical-thermal coupled simulation for lightning current damage of carbon fiber reinforced plastic[J]. Acta Materiae Compositae Sinica, 2015, 32(1):250-259(in Chinese). |
[2] | HAIGH T S J. Impulse effects during simulated lightning attachments to lightweight composite panels[C]//Int Aerospace Ground Conf Lightning Static Electricity, Paris, 2007. |
[3] | UMAN M A, RAKOV V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences, 2003, 39(1):61-81. |
[4] | RUPKE E. Lightning direct effects handbook[M]. London:Lightning Technologies Press, 2002. |
[5] | FERABOLI P, MILLER M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composite Part A:Applied Science & Manufacturing, 2009, 40(6-7):954-967. |
[6] | LI Y C, LI R F, LU L Y. Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike[J]. Composite Part A:Applied Science & Manufacturing, 2015, 79:164-175. |
[7] | WANG F S, JI Y Y, YU X S. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike[J]. Composite Structures, 2016, 145:226-241. |
[8] | DROUET M G, NADEAU F. Acoustic measurement of the arc voltage applicable to arc welding and arc furnaces[J]. Journal of Physics E:Scientific Instruments, 1982, 15:268-269. |
[9] | MUNOZ R, DELGADO S, GONZALEZ C. Modeling lightning impact thermo-mechanical damage on composite materials[J]. Applied Composite Materials, 2014, 21(1):149-164. |
[10] | CHEMARTIN L, LALANDE P, ELIASET P Q. Direct effects of lightning on aircraft structure:Analysis of the thermal, electrical and mechanical constraints[J]. Journal Aerospace Lab, 2012, 5:1-15. |
[11] | 尹俊杰, 李曙林, 姚学玲, 等. 含雷击热-力耦合损伤复合材料层压板拉伸剩余强度预测[J]. 复合材料学报, 2017, 34(1):83-90. YIN J J, LI S L, YAO X L, et al. Tensile residual strength prediction of composite laminate with lightning thermal-mechanical coupling damage[J]. Acta Materiae Compositae Sinica, 2017, 34(1):83-90(in Chinese). |
[12] | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). |
[13] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). |
[14] | GAGNE M, THERRIAULT D. Lighting strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64(1):1-16. |
[15] | LI Y C, LI R F, LAI H. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike[J]. Materials and Design, 2016, 99:477-489. |
[16] | OGASAWARA T, HIRANO Y, YOSHIMURA A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lighting current[J]. Composite:Part A:Applied Science and Manufacturing, 2010, 41(8):973-981. |
[17] | ABDELAL G, MURPHY A. Nonlinear numerical modeling of lightning strike effect on composite panels with temperature dependent material properties[J]. Composite Structures, 2014, 109(1):268-278. |
[18] | DONG Q, GUO Y L, SUN X C. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer, 2015, 56(1):385-394. |
[19] | LEPETIT B, ESCURE C, GUINARD S, et al. Thermo-mechanical effects induced by lightning on carbon fibre composite materials[C]//Int Aerospace Ground Conf Lightning Static Electricity, Pars, 2011. |
[20] | DROUET M G, NADEAU F. Pressure waves due to arcing faults in a substation[C]//IEEE Transactions on Power Apparatus and Systems, 1979, 98(5):1632-1635. |