|
- 2018
钢纤维类型对超高性能混凝土高温爆裂性能的影响
|
Abstract:
为了探寻可以有效改善超高性能混凝土(Ultra-high-performance concrete,UHPC)抗火性能的钢纤维类型,本文试验测定了不同类型钢纤维(3种普通钢纤维和2种来自于废旧轮胎的再生钢纤维)增韧UHPC及空白组混凝土的从常温至800℃高温爆裂行为和断裂能。结果显示,未掺入任何钢纤维的空白组UHPC试件全都发生了严重高温爆裂,钢纤维可以显著减轻其高温爆裂但却不能避免爆裂的发生,而掺入端钩型普通工业钢纤维(长度为35 mm,直径为0.55 mm)的UHPC呈现出最优的抗高温爆裂性能,其次是掺入未附着橡胶颗粒(RSF)的再生钢纤维(RSFR)增韧UHPC。可见,钢纤维自身性能特征显著影响了钢纤维增韧UHPC的高温爆裂,相同掺量情况下混凝土单位体积内分布密度较大的钢纤维或者分布密度较小但可以显著增加混凝土断裂韧性(断裂能)的钢纤维比较适合应用于具有较高抗火要求的UHPC结构中。 To explore the steel fiber which can improve the fire resistance of ultra-high-performance concrete (UHPC), explosive spalling behavior of different types of steel fiber (three types of normal steel fiber and two types of recycled steel fiber from waste tire) reinforced UHPC and plain UHPC exposed to high temperature up to 800℃ were experimentally investigated in this paper, and fracture energies of these concretes were also tested. All of plain UHPC specimens encounter severe explosive spalling. Steel fiber significantly alleviates the explosive spalling of UHPC but cannot avoid the occurrence of explosive spalling. UHPC incorporating normally available commercial steel fiber with hooked-end (35 mm long and 0.55 mm in diameter) exhibits the best resistance to explosive spalling, and the second is the UHPC incorporating recycled steel fiber without attached rubber. This suggests that the characteristics of steel fiber affect the explosive spalling of steel fiber reinforced UHPC significantly. The steel fiber which has a large distribution density or that without a large distribution density but can make concrete have high toughness (fracture energy), is more appropriate to be utilized in UHPC structures with high fire resistance requirements. 国家自然科学基金(51278048)
[1] | 赖建中, 徐升, 杨春梅, 等. 聚乙烯醇纤维对超高性能混凝土高温性能的影响[J]. 南京理工大学学报, 2013, 37(4):633-639. LAI J Z, XU S, YANG C M, et al. Influence of polyvinyl alcohol fibers on the properties of ultra high performance concrete at high temperature[J]. Journal of Nanjing University of Science and Technology, 2013, 37(4):633-639(in Chinese). |
[2] | YEO I H, KIM H Y, KIM H J, et al. An experimental study on the fire resistance performance and spalling of 100 MPa HSC columns mixed with fiber-cocktail[J]. Advanced Materials Research, 2012, 472-475(5):1370-1379. |
[3] | KUROIWA S, INOUE Y, FUJIOKA, et al. Performance confirmation tests on C100 concrete in Dubai, UAE[J]. Journal of Advanced Concrete Technology, 2007, 5(2):171-180. |
[4] | SAWAD Y, HAMADA M, URAKAWA K, et al. Study on fire resistance of reinforced concrete columns with ultra-high strength material:Part 8:Results of high temperature exposure tests of high strength concrete using polypropylene fibers for resistance of spalling[C]. Architectural Institute of Japan, 2004:99-100. |
[5] | 边松华, 朋改非, 赵章力, 等. 不同含湿量、纤维品种及掺量对高性能混凝土高温爆裂和残余抗压强度的影响[J]. 建筑材料学报, 2005, 8(3):321-327. BIAN S H, PENG G F, ZHAO Z L, et al. Effects of moisture contents and fibers on properties of high performance concrete at high temperature[J]. Journal of Building Materials, 2005, 8(3):321-327(in Chinese). |
[6] | Peng G F. Effect of steel fiber on explosive spalling and permeability of high performance concrete after exposure to high temperature[C]. Proceedings of the 6th International Conference on Concrete Under Severe Conditions (Environment and Loading), Merida Yucatan:CRC Press/Balkema, 2010:1029-1035. |
[7] | CHEN B. Residual strength of hybrid fiber reinforced high-strength concrete after exposure to high temperature[J]. Cement and Concrete Research, 2004, 34(6):1065-1069. |
[8] | 秦李林. 钢纤维活性粉末混凝土高温后抗压力学性能研究[J]. 新型建筑材料, 2015, 42(12):40-43. QIN X L. Experimental research of compressive strength of reactive powder concrete with steel fiber at elevated temperature[J]. New building materials, 2015, 42(12):40-43(in Chinese). |
[9] | International Union of Testing and Research Laboratories for Materials and Construction. RILEM technical recommendations for the testing and use of construction materials:Determination of the fracture energy of mortar and concrete by means of three point bend tests on notched beams[S]. London:E & FN SPON, 1994:99-101. |
[10] | 郭佩玲, 史冬青, 朱新强, 等. C100超高强泵混凝土在沈阳远吉大厦工程中应用[J]. 混凝土, 2003(7):48-51. GUO P L, SHI D Q, ZHU X Q, et al. Application of C100 ultra-high-strength pump concrete in Shenyang Yuanji building[J]. Concrete, 2003(7):48-51(in Chinese). |
[11] | 徐辉东, 王敏建. C100高性能砼在深厚表土冻结井壁中的应用研究[C]. 全国矿山建设学术会议, 黄山:合肥工业大学出版社, 2008:241-244. XU H D, WANG M J. Application research on C100 high-performance concrete in frozen shaft lining under deep and thick alluvium[C]. Proceedings of the Academic Conference on Mine Construction, Huangshan:Hefei University of Techology Press, 2008:241-244(in Chinese). |
[12] | YE H W, FENG N Q, LINGHU Y, et al. Research on fire resistance of ultra-high-performance concrete[J]. Advances in Materials Science & Engineering, 2012, 2012:530948. |
[13] | MIYAMOTO K, SAKURAMOTO F. Experimental study on ultra-high strength concrete:Part 6:Fire resistance of reinforced concrete columns[C]. Architectural Institute of Japan, 1992:481-482. |
[14] | LEE J H, LEE S H, SOHN Y S. Fire resistance of hybrid fiber-reinforced, ultra-high-strength concrete columns with compressive strength from 120 to 200 MPa[J]. Magazine of Concrete Research, 2012, 64(6):539-550. |
[15] | OZAWA M, MORIMOTO H. Effects of various fibres on high-temperature spalling in high performance concrete[J]. Construction and Building Materials, 2014, 71(2):83-92. |
[16] | GUO Y C, ZHANG J H, CHEN G M, et al. Compressive behavior of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fiber, subjected to elevated temperatures[J]. Journal of Cleaner Production, 2014, 72(6):193-203. |
[17] | ⅡCHISE K. Mechanical properties of ultra-high strength concrete under heating (high-strength concrete (4), materials construction)[J]. Journal of Architecture & Building Science, 2008:1059-1060. |
[18] | MINDEGUIA J C, PINIENTAP, CARRE H, et al. Experimental analysis of concrete spalling due to fire exposure[J]. European Journal of Environmental & Civil Engineering, 2012, 17(17):453-466. |
[19] | LEE J, HARADA K, KANG S, et al. Entire and partial heating tests of high strength concrete small columns[J]. Procedia Engineering, 2013, 62:804-812. |
[20] | SAKURAGI F, SUZUKI K, KANDA T. Development research on fire-resistance of ultra-high-performance concrete (five small-sized samples)[C]. Proceedings of Academic Lecture of the Japanese Society of Architecture Kyushu, 1992, 479-480. |
[21] | HOSSER D, KAMPMAIER B, HOLLMANN D. Behavior of ultra-high performance concrete (UHPC) in case of fire[C]. Proceedings of HiperMat 2012(3rd International Symposium on UHPC and Nanotechnology Symposium on UHPC Construction Materials), Kassel:Kassel University Press, 2012, 573-582. |
[22] | 李丽娟, 谢伟锋, 刘锋, 等. 100 MPa高强混凝土高温后性能研究[J]. 建筑材料学报, 2008, 11(1):100-104. LI L J, XIE W F, LIU F, et al. Performance of 100 MPa high strength concrete (HSC) after high temperature treatment[J]. Journal of Building Materials, 2008, 11(1):100-104(in Chinese). |
[23] | CHAN Y N, PENG G F, ANSON M. Fire behavior of high-performance concrete made with silica fume at various moisture contents[J]. ACI Materials Journal, 1999, 96(3):405-409. |
[24] | MITSUI K, YONEZAWA T, KOJIMA M, et al. Strength development, toughness and fire resistive performance of 150 to 200 N/mm2 super-high strength/high performance concrete[J]. Journal of the Society of Materials Science Japan, 2011, 60(8):701-708. |
[25] | 刘红彬, 李康乐, 鞠杨, 等. 钢纤维活性粉末混凝土的高温爆裂试验研究[J]. 混凝土, 2010(8):6-8. LIU H B, LI K L, JU Y, et al. Explosive spalling of steel fiber reinforced reactive powder concrete subject to high temperature[J]. Concrete, 2010(8):6-8(in Chinese). |
[26] | 陈强. 高温对活性粉末混凝土高温爆裂行为和力学性能的影响[D]. 北京:北京交通大学, 2010. CHEN Q. Influence of high temperature in explosive spalling behavior and mechanical properites of reactive powder concrete[D]. Beijing:Beijing Jiaotong University, 2010(in Chinese). |
[27] | SUN B, LIN Z. Investigation on spalling resistance of ultra-high-strength concrete under rapid heating and rapid cooling[J]. Case Studies in Construction Materials, 2016, 4:146-153. |
[28] | KLINGSCH E W, FRANGI A, FONTANA M. High-and ultrahigh-performance concrete:A systematic experimental analysis on spalling[J]. ACI Special Publication, 2011(9):1-50. |
[29] | GABRIEL ALEXANDER K. Effect of fire on concrete and concrete structures[J]. Progress in Structural Engineering and Materials, 2000, 2(4):429-447. |
[30] | NEOCLEOUS K, TLEMAT H, PILAKOUTAS K. Design issues for concrete reinforced with steel fibers, including fibers recovered from used tires[J]. Journal of Materials in Civil Engineering, 2006, 18(5):677-685. |
[31] | 董迎娜, 苏丽娜, 肖良群. 沈阳皇朝万鑫大厦混凝土结构施工技术[J]. 煤炭技术, 2011, 30(9):140-141. DONG Y N, SU L N, XIAO L Q. Technique of concrete structure in Shenyang Huangchao Wanxin building[J]. Coal Technology, 2011, 30(9):140-141(in Chinese). |
[32] | 王天政, 麦晓文, 赵书震, 等. C100高性能混凝土在建井工程中的应用[J]. 中州煤炭, 2015(12):75-77. WANG T Z, MAI X W, ZHAO S Z, et al. Application of C100 high-performance concrete in well construction[J]. Zhongzhou Coal, 2015(12):75-77(in Chinese). |
[33] | YOSHINO S, MATSUDO M, KIKUTA S, et al. Study on fire resistance of reinforced concrete columns with ultra-high strength material:Part 2:Result of fire resistance test under load[C]. Architectural Institute of Japan, 2002:23-24. |
[34] | HUO L, LIN X Q, LI G Y, et al. Effect of fiber on mechanical properties and fire resistance of C100 ultra high strength concrete[J]. Key Engineering Materials, 2014, 629-630:245-251. |
[35] | 林力勋, 叶浩文, 冯乃谦, 等. 掺聚丙烯纤维改善C120超高强混凝土脆性的试验研究[J]. 工业建筑, 2012, 42(11):1-5. LIN L X, YE H W, FENG N Q, et al. Experimental research on improving the brittleness of C120 concrete with ultra-high-performance by adding polypropylene fiber[J]. Industrial Construction, 2012, 42(11):1-5(in Chinese). |
[36] | MITSUI K, YONEZAWA T, KOJIMA M, et al. Effect of incorporating organic and steel fiber on fire resistance of 80 to 200 N/mm2 high strength concrete columns[J]. Journal of Structural & Construction Engineering, 2010, 75(75):461-468. |
[37] | XIONG M X, RICHARD LIEW J Y. Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after exposure to high temperatures[J]. Materiales de Construcción, 2015, 65(320):1-10. |
[38] | AIELLO M A, LEUZZI F, CENTONZE G, et al. Use of steel fibres recovered from waste tires as reinforcement in concrete:Pull-out behavior, compressive and flexural strength[J]. Waste Management, 2009, 29(6):1960-1970. |
[39] | 朋改非, 杨娟, 石云兴, 等. 超高性能混凝土抗高温爆裂性能试验研究[J]. 建筑材料学报, 2017, 20(2):229-233, 238. PENG G F, YANG J, SHI Y X, et al. Explosive spalling resistance of ultra-high performance concrete[J]. Journal of Building Materials, 2017, 20(2):229-233, 238(in Chinese). |