|
- 2018
异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能
|
Abstract:
采用甲苯-2,4-二异氰酸酯(TDI)对氧化石墨烯(GO)进行表面接枝改性,制得TDI功能化GO(TDI-GO),再将其分散于4,4’-二苯基甲烷二异氰酸酯中,经原位聚合法制备TDI-GO/热塑性聚氨酯弹性体(TPU)复合材料。利用FTIR、XPS、DSC、TG、SEM、维卡软化温度和拉力试验机等测试手段,表征和分析了TDI-GO的表面结构及TDI-GO含量对TDI-GO/TPU复合材料结构与性能的影响。结果表明,TDI成功接枝改性GO,TDI-GO的加入使TPU体系的微相分离程度减弱,其异相成核作用提高了TPU硬段相的结晶性能;相比纯TPU基体,TDI-GO/TPU复合材料耐热性能提高,当TDI-GO添加量为0.5wt%时,复合材料5%热失重温度提高了约9℃,维卡软化温度提高了约18℃;TDI-GO/TPU复合材料力学性能明显提高,与纯TPU相比,TDI-GO含量为0.5wt%的TDI-GO/TPU复合材料拉伸强度提高了近10 MPa,断裂伸长率提高了约32%。 The functionalized graphene oxide (TDI-GO) was prepared by grafting 2, 4-di-isocyanate(TDI) onto the surface of GO. Then a series of TDI-GO/thermoplastic polyurethane elastomer(TPU) composites with different TDI-GO contents were prepared by prepolymer method via in-situ polymerization. The structure of TDI-GO was characterized and the influences of the dosage of TDI-GO on the structure and properties of TDI-GO/TPU composites were studied by FTIR, XPS, DSC, TG, SEM, the Vicat softening temperature and the mechanical property tester. The results demonstrate that, TDI successfully graft onto GO; TDI-GO can decrease microphase separation of TPU, and improve the crystallinity of hard segment as a heterogeneous nucleation agent; comparing with the pristine TPU, TDI-GO/TPU composites have excellent thermal properties, when the mass fraction of TDI-GO is 0.5wt%, the 5% degradation temperature increases by 9℃, and the Vicat softening temperature raises by 18℃; the mechanical properties of TDI-GO/TPU composites enhance markedly, comparing with the pristine TPU, when the mass fraction of TDI-GO is 0.5wt%, the tensile strength increases almost 10 MPa, and the elongation at breaking increases about 32%. 太原工业学院大学生创新创业训练项目(GK20170112)
[1] | TANG X Z, MU C, ZHU W, et al. Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide[J]. Carbon, 2016, 98:432-440. |
[2] | BANDYOPADHYAY P, PARK W B, LAYEK R K, et al. Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film[J]. Journal of Membrane Science, 2016, 500:106-114. |
[3] | KUMAR A R S S, PIANA F, MICUSIK M, et al. Preparation of grapheme derivatives by selective reduction of graphite oxide and isocyanate functionalization[J]. Materials Chemistry and Physics, 2016, 182:237-245. |
[4] | KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11):3441-3450. |
[5] | 郑春森, 赵海平, 姚伯龙, 等. 功能石墨烯改性水性聚氨酯及其性能[J]. 复合材料学报, 2017, 34(12):2643-2652. ZHENG C S, ZHAO H P, YAO B L, et al. Preparation and properties of functionalized graphene modified waterborne polyurethane[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2643-2652(in Chinese). |
[6] | 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528-2009[S]. 北京:中国标准出版社, 2009. Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic:Determination of tensile stress-strain properties:GB/T 528-2009[S]. Beijing:China Standards Press, 2009(in Chinese). |
[7] | 闰彦玲, 杨建军, 吴庆云, 等. 乙二胺化GO-羟基硅油/超支化聚氨酯三元复合材料的制备与性能[J]. 复合材料学报, 2018, 35(4):774-784. RUN Y L, YANG J J, WU Q Y, et al. Preparation and properties of ethylenediamined GO-hydroxyl silicone/hyperbranched polyurethane ternary composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4):774-784(in Chinese). |
[8] | ZHAO C G, JI L J, LIU H J, et al. Fuctionalization carbon nanotubes containing isocyanate groups[J]. Journal of Solid State Chemistry, 2004, 177(12):4394-4398. |
[9] | STANKOVICH S, PINER R D, NGUYEN S T, et al. Synthesis and exfoliation of isocyanate-treated grapheme oxide nanoplatelets[J]. Carbon, 2006, 44(15):3342-3347. |
[10] | 刘厚钧. 聚氨酯弹性体手册[M]. 北京:化学工业出版社, 2012. LIU H Y. Handbook of polyurethane elastomers[M]. Beijing:Chemical Industry Press, 2012(in Chinese). |
[11] | 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494. OU Z X, ZHENG Y Y, XIAO D S, et al. Preparation and properties of functional graphene-carbon nano-tube/thermoplastic polyurethane composite film[J]. Acta Materiae Compositae Sinica, 2016, 33(3):486-494(in Chinese). |
[12] | LIN P, MENG L H, HUANG Y D, et al. Simultaneously functionalization and reduction of grapheme oxide containing isocyanate groups[J]. Applied Surface Science, 2015, 324(2):784-790. |
[13] | BARICK A K, TRIPATHY D K. Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique:Effect of nanoclay on morphology, mechanical, thermal, and rheological properties[J]. Journal of Applied Polymer Science, 2010, 117(2):639-654. |
[14] | CAI D Y, JIN J, YUSOH K, et al. High performance poly-urethane/functionalized grapheme nanocomposites with improved mechanical and thermal properties[J]. Composites Science and Technology, 2012, 72(6):702-707. |
[15] | FU C, HU X, YANG Z, et al. Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol-gel process[J]. Progress in Organic Coatings, 2015, 84:18-27. |
[16] | SUNG G, KIM J W, KIM J H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption[J]. Journal of Industrial and Engineering Chemistry, 2016, 44:99-104. |
[17] | 王芦芳, 李金焕, 刘彬, 等. KH560功能化氧化石墨烯/光敏性不饱和聚酯树脂复合材料的制备与性能[J]. 复合材料学报, 2018, 35(1):1-7. WABG L F, LI J H, LIU B, et al. Synthesis and characterization of reinforced photosensitive unsaturated polyester by KH560 functionalized nano graphene oxide[J]. Acta Materiae Compositae Sinica, 2018, 35(1):1-7(in Chinese). |
[18] | SHAHABADI S I S, KONG J, LU X. Aqueous-only, green route to self-healable, UV-resistant, and electrically conductive polyurethane/graphene/lignin nanocomposite coatings[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4):3148-3157. |
[19] | 寇雪莹. 热塑性弹性体/热塑性塑料体系分子链运动的研究[D]. 上海:华东师范大学, 2007. KOU X Y. Study on the molecular motion of thermoplastic elastomer/thermoplastic systerms[D]. Shanghai:East China Normal University, 2007(in Chinese). |
[20] | MA Y Y, YI G B, WANG J C, et al. Shape-controllable and -tailorable multi-walled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor[J]. Synthetic Metals, 2017, 223:67-72. |
[21] | GAMA N, COSTA L C, AMARAL V, et al. Insights into the physical properties of biobased polyurethane/expanded graphite composite foams[J]. Composites science and technology, 2017, 138:24-31. |
[22] | 周醒, 夏元梦, 蔺海兰, 等. 纳米SiO2功能化改性石墨烯/热塑性聚氨酯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(4):471-479. ZHOU X, XIA Y M, LIN H L, et al. Preparation and properties of nano SiO2 functionally modified grapheme/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4):471-479(in Chinese). |
[23] | 中国国家标准化管理委员会. 塑料聚氨酯生产用芳香族异氰酸酯第4部分:异氰酸根含量的测定:GB/T 12009.4-2016[S]. 北京:中国标准出版社, 2016. Standardization Administration of the People's Republic of China. Plastics:Aromatic isocyanates for use in the production of polyurethane Part 4:Determination of isocyanate content:GB/T 12009.4-2016[S]. Beijing:China Standards Press, 2016(in Chinese). |
[24] | 中国国家标准化管理委员会. 热塑性塑料维卡软化温度(VST)的测定:GB/T 1633-2000[S]. 北京:中国标准出版社, 2001. Standardization Administration of the People's Republic of China. Plastics:Thermoplastic materials:Determination of Vicat softening temperature (VST):GB/T 1633-2000[S]. Beijing:China Standards Press, 2001(in Chinese). |
[25] | ADHIKARI R, FUNATILLAKE T, MCCARTHY S, et al. Mixed macrodiol-based siloxane polyurethanes:Effect of the comacrodiol structure on properties and morphology[J]. Journal of Applied Polymer Science, 2000, 78(5):1071-1082. |