|
- 2018
多孔碳纳米管纸负载中空硅微球作为阳极的高容量锂硅电池
|
Abstract:
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。 In order to improve the electrochemical performance of lithium ion battery, a porous conductive current collector was fabricated mixing multiwalled carbon nanotubes (MWCNTs) and cellulose fibers through vacuum filtration method. The cellulose fibers were used as the matrix and MWCNTs as the conductive agent. The porous conductive paper of MWCNTs/paper fiber was used as cathode current collector instead of copper foil. The hollow Si microsphere doped with MWCNTs was used as active materials. FESEM was used for characterization. The results show that active substances of hollow Si-MWCNTs are well dispersed in network of MWCNTs conductive paper, which ensures the structural stability and chemical stability at the same time. The results show excellent cyclic stability and higher specific capacity, and also reversible. The capacity of the lithium ion battery reachs 1 300 mAh/g after 30 cycles at a rate of 0.02 C. The capacity still maintain 330 mAh/g at the current density of 3 C. When the current density reduces to 0.25 C, the capacity can be restored to as high as 1 150 mAh/g. 江西省科技厅科研(20142BBE50071);江西省教育厅(KJLD13006)
[1] | YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7):2949-2954. |
[2] | MA T, YU X, LI H, et al. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium ion batteries[J]. Nano Letters, 2017, 17(6):3959-3964. |
[3] | HUANG X, YANG J, MAO S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium ion batteries[J]. Advanced Materials, 2014, 26(25):4326-4332. |
[4] | DIMOV N, XIA Y G, YOSHIO M. Practical silicon-based composite anodes for lithium-ion batteries:Fundamental and technological features[J]. Journal of Power Sources, 2007, 171(2):886-893. |
[5] | MAROM R, AMALRAJ F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27):9938-9954. |
[6] | H?LKEN I, NEUBüSER G, POSTICA V, et al. Sacrificial template synthesis and properties of 3D hollow-silicon nanoand microstructures[J]. ACS Applied Materials and Interfaces, 2016, 8(31):20491-20498. |
[7] | BO L, LIU Y P, XU Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Journal of Power Sources, 2014, 267:469-490. |
[8] | BABAR A A, WANG X, IQBAL N, et al. Tailoring differential moisture transfer performance of nonwoven/polyacrylonitrile-SiO2 nanofiber composite membranes[J]. Advanced Materials Interfaces, 2017, 4(15):1700062. |
[9] | 韩坤明, 鲁道荣. 纳米SiO2-LiClO4/PVDF-HFP复合凝胶聚合物电解质的制备及其电化学性能[J]. 复合材料学报, 2008, 25(3):57-62. HAN K M, LU D R. Electrochemical performances and preparation of nano-SiO2-LiClO4/PVDF-HFP composite gel polymer electrolyte[J]. Acta Materiae Compositae Sinica, 2008, 25(3):57-62(in Chinese). |
[10] | 田黎明, 杨丹丹, 聂康明, 等. 多壁碳纳米管/PCL-b-PNIPAM复合材料的制备[J]. 复合材料学报, 2016, 33(12):2706-2711. TIAN L M, YANG D D, NIE K M, et al. Preparation of multi-walled carbon nanotubes/PCL-b-PNIPAM composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12):2706-2711(in Chinese). |
[11] | SALAJKOVA M, VALENTINI L, ZHOU Q, et al. Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes[J]. Composites Science & Technology, 2013, 87(9):103-110. |
[12] | 易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703.YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4):689-703(in Chinese). |
[13] | WADA T, ICHITSUBO T, YUBUTA K, et al. Bulk-nanoporous-silicon negativeelectrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process[J]. Nano Letters, 2014, 14(8):4505-4510. |
[14] | CAO X, CHUN X, LI S, et al. Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2016, 33(2):110-117. |
[15] | LV Q, LIU Y, MA T, et al. Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2015, 7(42):23501-23506. |
[16] | MA H, CHENG F, CEN J, et al. Nest-like silicon nanospheres for high-capacity lithium storage[J]. Advanced Materials, 2010, 19(22):4067-4070. |
[17] | AN W, FU J, MEI S, et al. Dual carbon layers hybridized mesoporous tin hollow spheres for fast-rechargeable and high-stable lithium-ion battery anode[J]. Journal of Materials Chemistry A, 2017, 5(27):14422-14429. |
[18] | FOWLER C E, KHUSHALANI D, MANN S. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chemical Communications, 2001(19):2028-2029. |
[19] | WANG B, LI X L, LUO B, et al. Approaching the downsizing limit of silicon for surface-controlled lithium storage[J]. Advanced Materials, 2015, 27(9):1526-1532. |
[20] | YIN Y X, WAN L J, GUO Y G. Silicon-based nanomaterials for lithium-ion batteries[J]. Chinese Science Bulletin, 2012, 57(32):4104-4110. |
[21] | 王海帆, 魏伟, 秦磊, 等. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响[J]. 新型炭材料, 2016, 31(3):307-314. WANG H F, WEI W, QING L, et al. Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries[J]. New Carbon Aterials, 2016, 31(3):307-314(in Chinese). |
[22] | 卢振明, 赵东林, 刘云芳, 等. 石墨化处理对碳纳米管结构的影响[J]. 材料热处理学报, 2005, 26(6):9-11. LU Z M, ZHAO D L, LIU Y F, et al. Effect of graphitization on the structures of carbon nanotubes[J]. Transactions Ofmaterials and Heat Treatment, 2005, 26(6):9-11(in Chinese). |
[23] | 张琳琳, 许钫钫, 冯景伟, 等. 石墨化对碳纳米管结构与电学性能的影响[J]. 无机材料学报, 2009, 24(3):535-538. ZHANG L L, XU F F, FENG J W, et al. Effect of graphitization on the structures and conducting property of carbon nano tubes[J]. Journal of Inorganic Materials, 2009, 24(3):535-538(in Chinese). |
[24] | YANG Y, WANG Z X, ZHOU Y, et al. Synthesis of porous Si/graphite/carbon nanotubes@C composites as a practical high-capacity anode for lithium-ion batteries[J]. Materials Letters, 2017, 199:84-87. |
[25] | GAO H X, HOU F, ZHENG X R, et al. Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications[J]. Vacuum, 2015, 112:1-4. |
[26] | KIM Y L, SUN Y K, LEE S M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008, 53(13):4500-4504. |
[27] | 施再发, 杨少彬, 刘景东, 等. 化学沉淀法制备S-FeS/介孔碳复合材料及其电化学性能[J]. 复合材料学报, 2015, 32(2):341-346.SHI Z F, YANG S B, LIU J D, et al. Preparation of S-FeS/mesoporous carbon composites by chemical precipitation and its electrochemical properties[J]. Acta Materiae Compositae Sinica, 2015, 32(2):341-346(in Chinese) |
[28] | 倪江锋, 周恒辉, 陈继涛, 等. 锂离子电池集流体的研究[J]. 电池, 2005, 35(2):128-130. NI J F, ZHOU H H, CHEN J T, et al. Study of current collectors for Li-ion batteries[J]. Battery Bimonthly, 2005, 35(2):128-130(in Chinese). |
[29] | ZHOU X, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87(1):663-668. |