|
- 2016
三维四向编织陶瓷基复合材料改进模型及刚度预报
|
Abstract:
基于对三维四向编织陶瓷基复合材料CT扫描结果的观察和理论分析, 参考现有交织模型, 建立了改进的胞元三维实体模型, 较为真实地反映了材料内部的细观结构。模型内部纤维束横截面沿纤维束轴向不断发生形状和面积的周期性变化, 纤维束横截面呈平行四边形、五边形交替变化, 不同纤维束轴线间呈交织关系, 接近材料内部纤维束间打紧后的挤压变形规律。通过测算平均纱线填充因子并配合有限元法获得了纤维束及材料的弹性性能, 与试验结果符合较好。有限元仿真显示在材料单胞内, 纤维束承担主要载荷, 纤维束与基体的某些交界处往往会出现应力集中现象, 可能是发生裂纹扩展及局部破坏的主要区域。该细观应力场的获得也为分析材料破坏机理和强度提供了基础。 Based on the CT scan results of 3D four-directional braided ceramic-matrix composites and theoretical analysis, referred to the existing interlaced model, an improved 3D cell element model was established. This model truly reflects the mesoscopic structure of the internal material. The yarns' cross-section along their axes model varied cyclically in shape and area, yarn's cross-sections alternate transformed form parallelograms to pentagons, each yarn's axis presented interlaced relationships, close to the extrusion deformation law of tight yarns in materials. By measuring the average yarn packing factor and using the finite element method, the elastic properties of yarns and materials were obtained. The predicted value agrees well with the test data. The finite element simulation reveals that the yarns undertake the main load in the materials' cell model. Some of the yarns and matrixes interfaces tend to appear stress concentration phenomenon. These areas could mostly produce crack propagations and local damages. The determination of the mesoscopic stress field also provides a foundation for the analysis of failure mechanism and the strength of the materials. 国家自然科学基金(51275023)
[1] | 刘大响. 高性能航空发动机的发展对材料技术的要求[J]. 燃气涡轮试验与研究, 1998, 11(3): 1-5. LIU D X. The requirement for materials technology to develop high performance aero engine[J]. Gas Turbine Experiment and Research, 1998, 11(3): 1-5 (in Chinese). |
[2] | 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1): 24-32. ZHANG L T, CHENG L F, XU Y D. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003(1): 24-32 (in Chinese). |
[3] | YANG J M, MA C L, CHOU T W. Fiber inclination model of three-dimensional textile structural composites[J]. Journal of Composite Materials, 1986, 20(5): 472-484. |
[4] | MA C L, YANG J M, CHOU T W. Elastic stiffness of three-dimensional braided textile structural composites[J]. ASTM Special Technical Publication, 1986(893): 404-421. |
[5] | KALIDINDI S R, FRANCO E. Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites[J]. Composites Science and Technology, 1997, 57(3): 293-305. |
[6] | WANG Y Q, WANG A S D. On the topological yarn structure of 3-D rectangular and tubular braided preforms[J]. Composites Science and Technology, 1994, 51(4): 575-586. |
[7] | 庞宝君, 杜善义, 韩杰才. 三维四向编织复合材料细观组织及分析模型[J]. 复合材料学报, 1999, 16(3): 135-139. PANG B J, DU S Y, HAN J C. Meso-structure and modeling of three-dimensional multi-directional composites[J]. Acta Materiae Compositae Sinica, 1999, 16(3): 135-139 (in Chinese). |
[8] | 卢子兴, 杨振宇, 刘振国. 三维四向编织复合材料结构模型的几何特性[J]. 北京航空航天大学学报, 2006, 32(1): 92-96. LU Z X, YANG Z Y, LIU Z G. Geometrical characteristics of structural model for 3-D braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1): 92-96 (in Chinese). |
[9] | 刘振国, 商园春, 董阿鹏, 等. 三维四向编织复合材料改进模型的细观分析[J]. 材料导报, 2013, 27(18): 148-152. LIU Z G, SHANG Y C, DONG A P, et al. Microstructure analysis of a new improved model for 3d four-directional braided composites[J]. Materials Review, 2013, 27(18): 148-152 (in Chinese). |
[10] | 徐焜, 许希武. 四步法三维矩形编织复合材料的细观结构模型[J]. 复合材料学报, 2006, 23(5): 154-160. XU K, XU X W. On the microstructure model of four-step 3D rectangular braided composites[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 154-160 (in Chinese). |
[11] | 冯伟, 王延荣, 魏大盛. 三维四向编织复合材料细观建模[J]. 航空动力学报, 2013(6): 1243-1249. FENG W, WANG Y R, WEI D S. Meso-scale modeling of 3-D four-directional braided composites[J]. Journal of Aerospace Power, 2013(6): 1243-1249 (in Chinese). |
[12] | 朱元林, 崔海涛, 温卫东, 等. 含纤维束截面形状变化的三维编织复合材料细观模型及刚度预报[J]. 复合材料学报, 2012, 29(6): 187-196. ZHU Y L, CUI H T, WEN W D, et al. Microstructure model and stiffness prediction of 3D braided composites considering yarns' cross-section variation[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 187-196 (in Chinese). |
[13] | 李嘉禄, 刘谦. 三维编织复合材料中纤维束横截面形状的研究[J]. 复合材料学报, 2001, 18(2): 9-13. LI J L, LIU Q. Study on fiber tows' cross-section in 3-d braided composites[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 9-13 (in Chinese). |
[14] | LIN H Y, NEWTON A. Computer representation of woven fabric by using B-splines[J]. Journal of the Textile Institute, 1999, 90(1): 59-72. |
[15] | 邵将. 三维编织陶瓷基复合材料刚度模型及刚度性能分析研究[D]. 南京: 南京航空航天大学, 2008. SHAO J. Research on stiffness model and stiffness analysis of three-dimensional braided ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). |
[16] | 巩龙东, 申秀丽. 基于能量法的三维四向编织复合材料细观建模[J]. 航空动力学报, 2015, 30(1): 106-113. GONG L D, SHEN X L. Mesoscopic modeling of three-dimensional four-directional braided composites using energy method[J]. Journal of Aerospace Power, 2015, 30(1): 106-113 (in Chinese). |
[17] | 丁丹烨. 三维编织复合材料编织几何和力学性能的细观分析[D]. 南京: 南京航空航天大学, 2008. DING D Y. Meso architecture and mechanical models of three-dimensional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). |
[18] | CHEN L, TAO X M, CHOY C L. On the microstructure of three-dimensional braided preforms[J]. Composites Science & Technology, 1999, 59(3): 391-404. |
[19] | 石多奇, 景鑫, 杨晓光. 三维四向编织CMCs 拉伸性能及损伤演化数值预测[J]. 复合材料学报, 2014, 31(6): 1543-1550. SHI D Q, JING X, YANG X G. Numerical prediction of tensile properties and damage evolution of three dimensional-four directional braided CMCs[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1543-1550 (in Chinese). |
[20] | FANG G D, JUN L, YU W, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 343-350. |