|
- 2018
空气浴条件下三水醋酸钠相变材料的储热性能实验
|
Abstract:
三水醋酸钠(CH3COONa3H2O)作为一种无机相变储能材料,具有潜热值高、导热性能好等优点,但是其在凝固过程中过冷度大制约了CH3COONa3H2O的应用。为了调节CH3COONa3H2O在空气浴条件下的过冷度,本文选用Na2HPO412H2O、Na2CO310H2O、Na4P2O710H2O、Na3PO412H2O、Na2SiO39H2O、Na2S2O39H2O和Na2B4O710H2O这7种无机水合盐材料作为成核剂,采用步冷曲线法在高低温试验箱中进行过冷度调节实验和热循环实验。结果表明:在空气浴条件下,质量分数为96% CH3COONa3H2O+2% Na2HPO412H2O+2%羧甲基纤维素的复合相变材料过冷度最小,为5.6℃;将复合相变材料进行25、50和75次热循环后,其相变点温度几乎维持不变,过冷度随循环次数增加而逐渐增大,相变潜热值随循环次数的增加逐渐减小。本研究丰富了CH3COONa3H2O相变材料的过冷度调节方案,为其工程化应用提供了参考。 Sodium acetate trihydrate (SAT), which has high energy storage density and high thermal conductivity, is an important phase change material (PCM) for thermal storage. But it suffers from serious supercooling during the solidification process, which constrains its application. In this study, seven kinds of nucleating agents (Na2HPO412H2O, Na2CO310H2O, Na4P2O710H2O, Na3PO412H2O, Na2SiO39H2O, Na2S2O39H2O and Na2B4O710H2O) were proposed to reduce the degree of supercooling of SAT. With the help of the high-low temperature test chamber, the experiments were performed to investigate the degree of supercoiling, and to validate the thermal stability of composite PCM by using the curve law of step. As a result, the composite PCM with the mass fraction of 96%CH3COONa3H2O+2%Na2HPO412H2O+2% carboxymethycellulose presents the smallest the degree of supercooling, which is 5.6℃. Moreover, the phase transformation point of the composite PCM varies a little with 25, 50 and 75 thermal cycles. While its latent heat would decrease and the degree of supercooling would increase with the number of thermal cycles increasing. Therefore, this study enriches the adjustment program of the degree of supercooling of SAT, and will be evaluated for engineering application in future offerings. 航空科学基金(20132851034)
[1] | RASTOGI M, CHAUHAN A, VAISH R, et al. Selection and performance assessment of phase change materials for heating, ventilation and air-conditioning applications[J]. Energy Conversion & Management, 2015, 89(89):260-269. |
[2] | SHARMA S, TAHIR A, REDDY K S, et al. Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material[J]. Solar Energy Materials & Solar Cells, 2016, 149:29-39. |
[3] | 张寅平. 相变贮能:理论和应用[M]. 合肥:中国科学技术大学出版社, 1996, 289-332. ZHANG Yinping. Phase change energy storage:Theory and application[M]. Hefei:Press of University of Science and Technology of China, 1996, 289-332(in Chinese). |
[4] | 张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社, 2009:10-17. ZHANG Renyuan. Phase change material and phase change energy storage technology[M]. Beijing:Science Press, 2009:10-17(in Chinese). |
[5] | MEHLING H, CABEZA L F. Solid-liquid phase change materials[M]. Springer Berlin Heidelberg:Heat and Cold Storage with PCM, 2008:11-55. |
[6] | SHARIF M K A, AL-ABIDI A A, MAT S, et al. Review of the application of phase change material for heating and domestic hot water systems[J]. Renewable & Sustainable Energy Reviews, 2015, 42:557-568. |
[7] | WAQAS A, DIN Z U. Phase change material (PCM) storage for free cooling of buildings-A review[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2):607-625. |
[8] | PARK J, KIM T, LEIGH S B. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions[J]. Solar Energy, 2014, 105:561-574. |
[9] | LANE G A. Phase change materials for energy storage nucleation to prevent supercoiling[J]. Solar Energy Materials & Solar Cells, 1992, 27(2):135-160. |
[10] | CABEZA L F, SVENSSON G, HIEBLER S, et al. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material[J]. Applied Thermal Engineering, 2003, 23(13):1697-1704. |
[11] | 李金田, 茅靳丰, 李伟华, 等. 三水醋酸钠的过冷机理与实验研究[J]. 制冷学报, 2009, 30(5):32-35. LI Jintian, MAO Jinfeng, LI Weihua, et al. Supercooling mechanism and experimental study of sodium acetate trihydrate[J]. Journal of Refrigeration, 2009, 30(5):32-35(in Chinese). |
[12] | 蔡路茵. 三水醋酸钠相变特性及蓄热应用研究[D]. 杭州:浙江工业大学, 2010. CAI Luyin. Thermal performance and application of sodium acetate thrihydrate as phase change material[D]. Hangzhou:Zhejiang University of Technology, 2010(in Chinese). |
[13] | 王智平, 郭长华, 王克振, 等. 相变材料三水醋酸钠储热性能实验研究[J]. 化学工程, 2011, 39(5):27-30. WANG Zhiping, GUO Changhua, WANG Kezhen, et al. Experimental study on heat storage performance of sodium acetate trihydrate as phase change material[J]. Chemical Engineering(China), 2011, 39(5):27-30(in Chinese). |
[14] | 卢大杰, 胡芃, 赵斌斌, 等. 三水合醋酸钠纳米成核剂的性能研究[J]. 工程热物理学报, 2012, V33(8):1279-1282. LU Dajie, HU Peng, ZHAO Binbin, et al. Study on the performance of nanoparticles as nucleating agents for sodium acetate trihydrate[J]. Journal of Engineering thermophysics, 2012, V33(8):1279-1282(in Chinese). |
[15] | HU P, LU D J, FAN X Y, et al. Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC[J]. Solar Energy Materials & Solar Cells, 2011, 95(9):2645-2649. |
[16] | DANNEMAND M, SCHULTZ J M, JOHANSEN J B, et al. Long term thermal energy storage with stable supercooled sodium acetate trihydrate[J]. Applied Thermal Engineering, 2015, 91:671-678. |
[17] | WADA T, YAMAMOTO R, MATSUO Y. Heat storage capacity of sodium acetate trihydrate during thermal cycling[J]. Solar Energy, 1984, 33(3):373-375. |
[18] | 方玉堂, 金策, 梁向晖, 等. 三水醋酸钠/甲酰胺复合相变材料的制备及性能[J]. 化工学报, 2015, 66(12):5142-5148. FANG Yutang, JIN Ce, LIANG Xianghui, et al. Preparation and performance of sodium acetate trihydrate/formamide composite phase change material[J]. CIESC Journal, 2015, 66(12):5142-5148(in Chinese). |
[19] | 李晶, 刘中良, 马重芳. 改善三水醋酸钠固液相变性能的实验研究[J]. 工程热物理学报, 2006, 27(5):817-819. LI Jing, LIU Zhongliang, MA Chongfang. Experimental study on improving solid-liquid phase change performance of acetate hydroxide trihydrate[J]. Journal of Engineering Thermophysics, 2006, 27(5):817-819(in Chinese). |
[20] | 张雪梅, 钟英杰, 骆兰花, 等. 改进三水醋酸钠蓄热性能的实验研究[J]. 浙江工业大学学报, 2006, 34(6):688-691. ZHANG Xuemei, ZHONG Yingjie, LUO Lanhua, et al. Experimental researches for improving the heat storage performance of sodium acetate trihydrate[J]. Journal of Zhejiang University of Technology, 2006, 34(6):688-691(in Chinese). |
[21] | TAKEDA S, NAGANO K, MOCHIDA T, et al. Development of a ventilation system utilizing thermal energy storage for granules containing phase change material[J]. Solar Energy, 2004, 77(3):329-338. |
[22] | GRACIA A D, DAVID D, CASTELL A, et al. A correlation of the convective heat transfer coefficient between an air flow and a phase change material plate[J]. Applied Thermal Engineering, 2013, 51(1-2):1245-1254. |
[23] | LIANG H, YANG Q, ALEJANDRO L. Development of a wall collector unit and phase change material (PCM), air heat exchanger for heating application in greenhouses[J]. Energy & Environment Research, 2012, 3(1):25-32. |
[24] | THAMBIDURAI M, PANCHABIKESAN K, KRISHNA M N, et al. Review on phase change material based free cooling of buildings-The way toward sustainability[J]. Journal of Energy Storage, 2015, 4:74-88. |
[25] | KERKAMM I. Battery thermal management using phase change material:US, US20140004394[P]. 2014-01-02. |