|
- 2018
刚性卵形头弹撞击角度对编织复合材料层合板侵彻特性的影响
|
Abstract:
利用一级气炮发射卵形头弹撞击2 mm厚度的编织复合材料层合板,撞击角度分别为0°、30°和45°,通过高速相机记录弹靶撞击过程,并获得弹体速度数据。基于拟合公式处理试验数据,计算获取弹道极限,分析撞击角度对弹道极限、靶板能量吸收率及其失效模式的影响规律及机制。结果表明:弹体撞击角度为45°时,靶板弹道极限最高,其次为0°,撞击角度为30°时最小。随着冲击角度增加,层合板损伤形状从菱形逐渐转变为椭球形,损伤面积随冲击速度增加而增大,且45°冲击时层合板损伤面积最大,0°和30°冲击时损伤面积近似相等。弹体初始撞击角度对靶体失效模式存在影响,弹体撞击角度为0°时,纤维断口主要是剪切应力导致的横截面。撞击角度为30°时,纤维断口主要是剪切应力和拉伸应力导致的斜截面。45°斜撞击时,纤维断口主要是拉伸应力导致的横截面。 The 2 mm thick woven composite laminates were impacted by the ogival-nosed projectiles launched by a one-stage gas gun, and the impact angle was 0°, 30° and 45°. The process of projectiles impacting targets were recorded with photos of a high-speed camera and the velocities of the projectiles were obtained. The influence of the impact angles on the ballistic limits, the energy absorption efficiency of the targets and failure mechanisms was analyzed by using the fitted formula to deal with the experimental data. The results show that the ballistic limit impacted by 45° is the highest, followed by 0° and 30° impact. The damage area shape of laminates gradually changes from rhombus to ellipsoid with the increase of the impact angle and the damage area increases with the increase of the impact velocity. Damage area of laminate is the largest at 45°, and the damage area is approximately equal at 0° and 30°. The impact angle of projectile has great influence on the failure mode of plate, the fiber fracture is main cross section caused by shear stress when 0° impact and that is oblique section by shear stress and tensile stress for 30° impact. For 45° impact, the fiber fracture is cross section caused by tensile stress. 中央高校基本业务费资助项目(Y17-07;3122016C001)
[1] | DEY S, B?RVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes[J]. International Journal of Impact Engineering, 2004, 30(8-9):1005-1038. |
[2] | B?RVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1-4):35-64. |
[3] | DEY S, B?RVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates:An experimental and numerical investigation[J]. International Journal of Solids & Structures, 2007, 44(20):6701-6723. |
[4] | B?RVIK T, HOPPERSTAD O S, PEDERSEN K O. Quasi-brittle fracture during structural impact of AA7075-T651 aluminum plates[J]. International Journal of Impact Enginee-ring, 2010, 37(5):537-551. |
[5] | IABAL M A, GUPTA G, DIWAKAR A, et al. Effect of projectile nose shape on the ballistic resistance of ductile targets[J]. European Journal of Mechanics A:Solids, 2010, 29(4):683-694. |
[6] | 周宁, 任辉启, 沈兆武, 等. 卵形头部弹丸侵彻钢筋混凝土的工程解析模型[J]. 振动与冲击, 2007, 26(4):73-76. ZHOU N, REN H Q, SHEN Z W, et al. Engineering analytical model for projectiles to penetrate into semi-infinite reinforced concrete targets[J]. Journal of Vibration and Shock, 2007, 26(4):73-76(in Chinese). |
[7] | 刘志林, 孙巍巍, 王晓鸣, 等. 卵形弹丸垂直侵彻钢筋混凝土靶的工程解析模型[J]. 弹道学报, 2015(3):84-90. LIU Z L, SUN W W, WANG X M, et al. Engineering analytical model of ogive-nose steel projectiles vertically penetrating reinforced concrete target[J]. Journal of Ballistics, 2015(3):84-90(in Chinese). |
[8] | 周宁, 任辉启, 沈兆武, 等. 卵形头部弹丸侵彻混凝土的研究[J]. 高压物理学报, 2007, 21(3):242-248. ZHOU N, REN H Q, YAO Z W, et al. Study on penetration of concrete targets by ogiva-nose steel projectile[J]. Chinese Journal of High Pressure Physics, 2007, 21(3):242-248(in Chinese). |
[9] | 聂明飞, 李玉龙. 卵形头部弹侵彻单多层混凝土靶板有限元仿真[J]. 探测与控制学报, 2009, 31(4):78-83. NIE M F, LI Y L. Finite element simulation on ogive-nosed projectiles penetrating single and multi-layered concrete targets[J]. Journal of Detection & Control, 2009, 31(4):78-83(in Chinese). |
[10] | 刘璐璐, 宣海军, 洪伟荣, 等. 锻纹机织复合材料高速冲击试验研究及理论分析[J]. 中国科技论文, 2016, 11(10):1169-1174. LIU L L, XUAN H J, HONG W R, et al. Experimental study and theoretical analysis on high velocity impact of satin woven carbon fiber reinforced composites[J]. China Science Paper, 2016, 11(10):1169-1174(in Chinese). |
[11] | 古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟[J]. 复合材料学报, 2012, 30(1):211-219. GU X J, XU X W. Numerical simulation of damage in fiber reinforce composite laminates under high velocity impact[J]. Acta Materiae Compositae Sinica, 2012, 30(1):211-219(in Chinese). |
[12] | 古兴瑾, 许希武, 黄晶. 层合复合材料薄板高速撞击损伤研究[J]. 南京航空航天大学学报, 2008, 40(3):370-375. GU X J, XU X W, HUANG J. High velocity impact damage of thin composite laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(3):370-375(in Chinese). |
[13] | CHEN Y, PANG B J, ZHENG W, et al. Experimental investigation on normal and oblique ballistic impact behavior of fiber metal laminates[J]. Journal of Reinforced Plastics & Composites, 2013, 32(23):1769-1778. |
[14] | ZHANG H J, CHEN W Y, CHEN D C. Microstructure of the hole surface of CFRP[J]. Acta Materiae Compositae Sinica, 2000, 17(2):98-101. |
[15] | 马凯, 许希武, 古兴瑾. 纤维增强复合材料层板高速倾斜撞击损伤数值模拟[J]. 复合材料学报, 2013, 30(3):150-161. MA K, XU X W, GU X J. Numerical simulation of damage in fiber reinforce composite laminates under high velocity oblique impact[J]. Acta Materiae Compositae Sinica, 2013, 30(3):150-161(in Chinese). |
[16] | XIE W, ZHANG W, KUANG N, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere[J]. Composites Part B:Engineering, 2016, 99:483-493. |
[17] | 辛士红. 纤维增强树脂基复合材料层合板抗侵彻性能数值模拟研究[D]. 合肥:中国科学技术大学, 2015. XIN S H. Numerical study on the penetration resistence of fiber reinforced plastic laminates[D]. Hefei:University of Science and Technology of China, 2015(in Chinese). |
[18] | WEN H M. Penetration and perforation of thick FRP laminates[J]. Composites Science & Technology, 2001, 61(8):1163-1172. |
[19] | CHU C K, CHEN Y L, HSEU G C, et al. The study of obliquity on the ballistic performance of basket fabric composite materials[J]. Journal of Composite Materials, 2007, 41(13):1539-1558. |
[20] | 覃悦, 文鹤鸣, 何涛. 锥头弹丸撞击下FRP层合板的侵彻与穿透的理论研究[J]. 高压物理学报, 2007, 21(2):121-128. QIN Y, WEN H M, HE T. Theoretical study on the penetration and perforation of FRP laminates struck by cone-nosed projectiles[J]. Chinese Journal of High Pressure Physics, 2007, 21(2):121-128(in Chinese). |
[21] | RECHT R F, IPSON T W. Ballistic perforation dynamics[J]. Journal of Applied Mechanics, 1963, 30(3):384-390. |
[22] | ZHENG L, YUAN J T, WANG Z H. Microscopic study of ground surfaces of drilled holes in fibre reinforced plastics[J]. Acta Armamentarii, 2008, 29(12):1492-1496. |
[23] | IQBAL M A, GUPTA N K. Ballistic limit of single and layered aluminum plates[J]. Strain, 2009, 47(s1):e205-e219. |
[24] | SIKARWAR R S, VELMURUGAN R, GUPTA N K. Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading[J]. Composites Part B:Engineering, 2014, 60(1):627-636. |
[25] | LóPEZ J. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates[J]. Composites Part A:Applied Science & Manufacturing, 2008, 39(2):374-387. |