|
- 2018
BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论
|
Abstract:
通过11根玄武岩纤维增强聚合物复合材料(BFRP)筋钢纤维高强混凝土梁的受弯性能试验,研究了钢纤维混凝土层厚度、钢纤维体积分数和BFRP筋配筋率对BFRP筋钢纤维高强混凝土梁受弯破坏形态及其承载力的影响。结果表明,BFRP筋钢纤维高强混凝土梁的破坏模式可分为受压破坏、受拉破坏和平衡破坏3种;钢纤维混凝土层厚度和钢纤维体积分数的变化对于BFRP筋钢纤维高强混凝土梁受弯承载力具有一定程度的影响,当BFRP筋配筋率为0.77%时,掺加体积分数为1.0%钢纤维的梁受弯承载力较无钢纤维梁提高了22.7%,在受拉区0.57倍截面高度内掺加1.0vol%钢纤维的梁受弯承载力达到全截面钢纤维混凝土梁受弯承载力的86.7%;增大BFRP筋配筋量可显著提高BFRP筋钢纤维高强混凝土梁的受弯承载力,BFRP筋配筋率为1.65%的试验梁受弯承载力较配筋率为0.56%的试验梁提高了39.4%。针对不同的破坏模式,提出了BFRP筋钢纤维高强混凝土梁受弯承载力和平衡配筋率的计算方法,并结合安全配筋率的概念对试验梁的破坏模式进行了预测,试验结果与分析结果吻合良好。 In order to investigate the influences of depth of steel fiber reinforced concrete layer, steel fiber volume fraction and ratio of basalt fiber reinforced polymer(BFRP) bars on flexural capacity of high-strength concrete beams reinforced with BFRP bars and steel fiber, 11 specimens were cast and tested. The results indicate that there are 3 failure modes of high-strength concrete beams reinforced with BFRP bars and steel fiber:concrete crush, BFRP bars rupture and balance failure. The steel fiber reinforced concrete layer and steel fiber volume fraction have various influences on flexural capacity of specimens. When the BFRP reinforcement ratio is 0.77%, with the addition of steel fiber (the volume fraction was 1.0%), the flexural capacity can be increased by 22.7%; for the specimen with steel fiber volume fraction of 1.0% and steel fiber reinforced concrete layer of 0.57 times of the total depth of beam, the flexural capacity is 86.7% of that of the fully steel fiber reinforced specimen. Increasing BFRP reinforcement ratio is an effective way to improve the flexural capacity of BFRP bar and steel fiber reinforced beams, the flexural capacity of the specimen with BFRP reinforcement ratio of 1.65% is 39.4% higher than that of the specimen with BFRP reinforcement ratio of 0.56%. Based on the experimental and theoretical analysis, a calculating method, which can be used for evaluating the failure mode and flexural capacity of high-strength concrete beams reinforced with BFRP bars and steel fiber, was proposed. The calculated values have good agreement with test results. 国家自然科学基金(51178433;51578510)
[1] | 薛伟辰, 郑乔文, 杨雨. FRP筋混凝土梁正截面抗弯承载力设计研究[J]. 工程力学, 2009, 26(1):79-85. XUE Weichen, ZHENG Qiaowen, YANG Yu. Design recommendations on flexural capacity of FRP-reinforced concrete beams[J]. Engineering Mechanics, 2009, 26(1):79-85(in Chinese). |
[2] | 郝庆多. GFRP/钢绞线复合筋混凝土梁力学性能及设计方法[D]. 哈尔滨:哈尔滨工业大学, 2009. HAO Qingduo. Performance and design methods of concrete beams reinforced with GFRP/steel wire composite rebars[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese). |
[3] | VIJAY P V, GANGARAO H V S. Bending behavior and deformability of glass fiber-reinforced polymer reinforced concrete members[J]. ACI Structural Journal, 2001, 98(6):834-842. |
[4] | American Concrete Institute. Guide for the design and construction of structural concrete reinforced with FRP bars:ACI 440.1R-2015[S]. Farmington Hills:American Concrete Institute, 2015. |
[5] | 许海雄, 曹宝珠, 欧马立加斯索. FRP筋海砂混凝土的应用与研究现状分析[J]. 混凝土, 2016(6):151-154. XU Haixiong, CAO Baozhu, OMARY Castro. Analysis on application and research status on sea sand concrete reinforced with FRP bars[J]. Concrete, 2016(6):151-154(in Chinese). |
[6] | 高丹盈, 李趁趁, 朱海堂. 纤维增强塑料筋的性能与发展[J]. 纤维复合材料, 2002(4):37-40. GAO Danying, LI Chenchen, ZHU Haitang. The behavior and development of fiber reinforced plastic(FRP) rebar[J]. Fiber Composites, 2002(4):37-40(in Chinese). |
[7] | 郑文忠, 卢姗姗, 李莉. GFRP筋活性粉末混凝土梁受力性能试验研究[J]. 建筑结构学报, 2011, 32(6):115-124. ZHENG Wenzhong, LU Shanshan, LI Li. Experimental research on mechanical performance of reactive powder concrete beams reinforced with GFRP bars[J]. Journal of Building Structures, 2011, 32(6):115-124(in Chinese). |
[8] | 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范:GB50608-2010[S]. 北京:中国计划出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for infrastructure application FRP composites:GB50608-2010[S]. Beijing:China Planning Press, 2011(in Chinese). |
[9] | 中国工程建设标准化协会. 纤维混凝土结构技术规程:CECS 38:2004[S]. 北京:中国计划出版社, 2004. China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures:CECS 38:2004[S]. Beijing:China Planning Press, 2004(in Chinese). |
[10] | 高丹盈, 雷杰, 海慧. 钢纤维高强混凝土三桩承台受力性能及承载力计算方法[J]. 水利学报, 2015, 46(2):153-163. GAO Danying, LEI Jie, HAI Hui. Plastic analysis for flexural capacity of steel fiber-reinforced high-strength concrete four-pile caps[J]. Journal of Hydroelectric Engineering, 2015, 46(2):153-163(in Chinese). |
[11] | 宁喜亮, 丁一宁. 钢筋钢纤维自密实混凝土梁裂缝宽度试验研究[J]. 工程力学, 2017, 34(4):116-124. NING Xiliang, DING Yining. Experimental research on crack width of steel fibers reinforced self-consolidating concrete beams[J]. Engineering Mechanics, 2017, 34(4):116-124(in Chinese). |
[12] | ALSYED S H, ALHOZIMY A M. Ductility of concrete beams reinforced with FRP bars and steel fibers[J]. Journal of Composite Materials, 1999, 33(19):1792-1806. |
[13] | YANG J M, MIN K H, SHIN H O, et al. Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars[J]. Composites Part B:Engineering, 2012, 43:1077-1086. |
[14] | ISSA M S, METWALLY I M, ELZEINY S M. Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars[J]. Engineering Structures, 2011, 33(5):1754-1763. |
[15] | 中华人民共和国国家质量监督检验检疫总局. 混凝土结构试验方法标准:GB 50152-2012[S]. 北京:中国建筑工业出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for test methods of concrete structures:GB 50152-2012[S]. Beijing:China Architecture & Building Press, 2012(in Chinese). |
[16] | 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013. GUO Zhenhai. Reinforced concrete theory[M]. Beijing:Tsinghua University Press, 2013(in Chinese). |
[17] | 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2010. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures:GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2010(in Chinese). |
[18] | 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3):24-36(in Chinese). |
[19] | 毕巧巍. 玄武岩纤维混凝土的微结构及BFRP筋纤维混凝土梁斜截面承载力试验研究[D]. 大连:大连理工大学, 2012. BI Qiaowei. Experimental research on the micro-structure of basalt fiber reinforced concrete and the oblique section bearing capacity of the BFRP bars reinforced fiber concrete beams[D]. Dalian:Dalian University of Technology, 2012(in Chinese). |
[20] | 王茂龙, 朱浮声, 金延. 纤维塑料筋(FRP筋)在混凝土结构中的应用[J]. 混凝土, 2005(11):17-23. WANG Maolong, ZHU Fusheng, JIN Yan. Fiber reinforced plastics(FRP) applying in concrete structures[J]. Concrete, 2005(11):17-23(in Chinese). |
[21] | 庞磊, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. PANG Lei, QU Wenjun, LI Ang. Calculation of flexural strength for concrete beams reinforced with hybrid(FRP and steel) bars[J]. China Journal of Highway & Transport, 2016, 29(7):81-88(in Chinese). |