|
- 2017
纤维体积分数对W纤维/Zr基非晶合金复合材料压缩性能的影响
|
Abstract:
采用渗流铸造法制备了含不同体积分数W纤维的Wf/Zr基非晶合金复合材料,其中Wf体积分数分别为47%、66%、77%和86%。研究了Wf体积分数对Zr基非晶复合材料室温准静态压缩力学性能以及变形行为的影响。结果表明:随Wf体积分数的增加,Wf/Zr基非晶复合材料的屈服强度单调增大,塑性应变先增大后减小,Wf体积分数为66%时塑性应变最大,Wf/Zr基非晶复合材料塑性应变的变化主要取决于非晶基体和Wf相互作用的程度。随着应变量的增大,基体中剪切带的数量和密度也随之增大,主剪切带向大于45°方向偏转。由于压头的影响,Wf/Zr基非晶复合材料压缩过程中样品端部和中部的受力状态不同,导致两部分的剪切带方向也明显不同。随Wf体积分数的增大,Wf/Zr基非晶复合材料的断裂方式由剪切断裂向纵向劈裂转变,断裂行为符合摩尔库伦准则。 The W fiber Wf/Zr-based metallic glass composites with different fiber volume fraction VF were prepared by infiltration and rapid solidification. The VF were 47%, 66%, 77% and 86%, respectively. The effect of VF on the quasi-static compression mechanical properties and deformation behavior of the Wf/Zr-based metallic glass composites was researched in detail. The results show that the yield strength of the Wf/Zr-based metallic glass composites increases with increase of the VF. The plastic strain firstly increases and then decreases with increase of the VF. The plastic strain is the largest when the VF is 66%. The change of the plastic strain in the Wf/Zr-based metallic glass composites mainly depends on the interaction between matrix and Wf. With increase of strain, the quantity and density of the shear bands in the matrix increase, and the main shear band deflects towards the direction more than 45°. The stress state in the end and middle of the Wf/Zr-based metallic glass composites sample is different during compression because of the influence of the pressure head, which results in the direction of the shear bands difference in different areas of the sample. The failure modes of the Wf/Zr-based metallic glass composites change from shear fracture to longitudinal splitting with the increase of the VF. The fracture behavior the Wf/Zr-based metallic glass composites complies with the Mohr-Coulomb criterion. 国家自然科学基金(51401131)
[1] | PAMPILLO C A. Flow and fracture in amorphous alloys[J]. Journal of Materials Science, 1975, 10(7): 1194-1227. |
[2] | L?FFLER J F. Bulk metallic glasses[J]. Intermetallics, 2003, 11(6): 529-540. |
[3] | SCHNEIDER S. Bulk metallic glasses[J]. Journal of Physics: Condensed Matter, 2001: 137723-137736. |
[4] | ZHANG Z, ZHANG H, PAN X, et al. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass[J]. Philosophical Magazine Letters, 2005, 85(10): 513-521. |
[5] | CONNER R D, LI Y, NIX W D, et al. Shear band spacing under bending of Zr-based metallic glass plates[J]. Acta Materialia, 2004, 52(8): 2429-2434. |
[6] | 陈洁, 李敏, 张佐光, 等. 铁基非晶条带玻璃纤维混杂复合材料力学特性[J]. 复合材料学报, 2009, 26(6): 18-24. CHEN Jie, LI Min, ZHANG Zuoguang, et al. Mechanical behavior of Fe-based amorphous ribbons-glass fibers reinforced hybrid composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 18-24 (in Chinese). |
[7] | 王鹏, 寇宏超, 白洁, 等. 塑性钛基非晶复合材料的制备及性能[J]. 复合材料学报, 2012, 29(6): 120-124. WANG Peng, KOU Hongchao, BAI Jie, et al. Preparation and properties of Ti-based metallic glass composite[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 120-124 (in Chinese). |
[8] | ZHU Z, ZHANG H, HU Z, et al. Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity[J]. Scripta Materialia, 2010, 62(5): 278-281. |
[9] | CONNER R D, DANDLIKER R B, JOHNSON W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites[J]. Acta Materialia, 1998, 46(17): 6089-6102. |
[10] | CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J]. International Journal of Impact Engineering, 2000, 24(5): 435-444. |
[11] | CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites[J]. Scripta Materialia, 2001, 45(9): 1039-1046. |
[12] | ZHANG B, FU H, SHA P, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites[J]. Materials Science and Engineering A, 2013: 56616-56621. |
[13] | QIU K Q, WANG A M, ZHANG H F, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite[J]. Intermetallics, 2002, 10(11): 1283-1288. |
[14] | ZHANG H, ZHANG Z F, WANG Z G, et al. Effects of tungsten fiber on failure mode of Zr-based bulk metallic glassy composite[J]. Metallurgical and Materials Transactions A, 2006, 37(8): 2459-2469. |
[15] | ILIESCU D, SCHULSON E M. The brittle compressive failure of fresh-water columnar ice loaded biaxially[J]. Acta Materialia, 2004, 52(20): 5723-5735. |
[16] | ZHANG Z, HE G, ZHANG H, et al. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites[J]. Scripta Materialia, 2005, 52(9): 945-949. |
[17] | CHEN Y, WANG A, FU H, et al. Preparation, microstructure and deformation behavior of Zr-based metallic glass/porous SiC interpenetrating phase composites[J]. Materials Science and Engineering A, 2011, 530(12): 15-20. |