全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Ni (OH)2-碳纳米管-还原氧化石墨烯复合材料的制备及电化学性能
Preparation and electrochemical properties of Ni(OH)2-carbon nanotubes-reduced graphene oxide composites

DOI: 10.13801/j.cnki.fhclxb.20171018.002

Keywords: Ni(OH)2,碳纳米管(CNTs),还原氧化石墨烯(RGO),电极材料,电化学性能
Ni(OH)2
,carbon nanotubes(CNTs),reduced graphene oxide(RGO),electrode materials,electrochemical performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用简单易行的一步水热法制备了Ni(OH)2-碳纳米管-还原氧化石墨烯(Ni(OH)2-CNTs-RGO)三元复合材料,研究了不同水热反应温度对三元复合材料性能的影响。采用XRD、FTIR、Raman、X射线光电子能谱(XPS)、SEM及TEM对Ni(OH)2-CNTs-RGO复合材料的结构和表面微观形貌进行表征。利用循环伏安(CV)、电化学交流阻抗(EIS)和恒电流充放电测试了复合电极材料的电化学性能。研究结果表明,当反应温度为120℃时,所制备的Ni(OH)2-CNTs-RGO复合材料具有大的比表面积和三维网状结构,复合材料中六角形的β-Ni(OH)2纳米片和CNTs均匀分散在RGO片层表面,有效阻止了RGO的团聚。Ni(OH)2-CNTs-RGO复合电极材料在充电倍率为0.2 C时,放电比容量达到362.8 mAh/g,5 C时放电比容量为286.2 mAh/g,仍大于Ni(OH)2在0.2 C时的放电比容量,表明CNTs与RGO的协同作用有效提高了电极材料的导电性和活性物质的利用率,最终提升了Ni(OH)2-CNTs-RGO复合材料的倍率性能。 Ni(OH)2-carbon nanotubes-reduced graphene oxide (Ni(OH)2-CNTs-RGO) ternary composites were synthesized by simple and practicable one-pot hydrothermal synthesis method. The influence of different reaction temperatures on properties of composite materials was researched. The microstructure and morphology of Ni(OH)2-CNTs-RGO composites were characterized by XRD, FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), SEM and TEM. The electrochemical characteristics of Ni(OH)2-CNTs-RGO electrode composites were tested by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge. The results show that the prepared Ni(OH)2-CNTs-RGO composite has large specific surface area and 3D network structure when the reaction temperature is 120℃. The synthesized Ni(OH)2-CNTs-RGO composite shows that hexagonal β-Ni(OH)2 nano sheets and CNTs are homogeneously dispersed and inserted into RGO sheets. The Ni(OH)2-CNTs-RGO electrode composite exhibits the discharge specific capacity up to 362.8 mAh/g at 0.2 C and 286.2 mAh/g at 5 C, which is still higher than the specific capacity of Ni(OH)2. The CNTs and RGO collaborative role effectively improves the conductivity of the electrode material and the utilization of active material. Finally, the rate performance of Ni(OH)2-CNTs-RGO composite is improved. 内蒙古青年科技英才计划(NJYT-14-A08);内蒙古自然科学基金(2014MS0523,2015MS0208);包头市科技计划(2015C2004-1);国家自然科学基金(21766024)

References

[1]  陆天虹. 能源电化学[M]. 北京:化学工业出版社, 2014. LU T H. Electrochemical energy[M]. Beijing:Chemical Industry Press, 2014 (in Chinese).
[2]  FENG L, ZHU Y, DING H, et al. Recent progress in nickel based materials for high performance pseudocapacitor electrodes[J]. Journal of Power Sources, 2014, 267(3):430-444.
[3]  邓凌峰, 彭辉艳, 覃昱焜, 等. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 25(4):121-127. DENG L F, PENG H Y, TAN Y K, et al. Combinstion carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J]. Journal of Materials Engineering, 2017, 25(4):121-127 (in Chinese).
[4]  JI J Y, ZHANG L L, JI H G, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano, 2013, 7(7):6237-6243.
[5]  YAN J, FAN Z, WEI S, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12):2632-2641.
[6]  LIU C Y, WEITZ I S. Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors[J]. Electrochemical and Solid-State Letters, 1999, 2(11):577-578.
[7]  姜丽丽, 李传通, 于海涛, 等. 石墨烯/碳纳米管复合材料的制备方法及应用进展[J]. 化学与生物工程, 2017, 34(2):1-5. JIANG L L, LI C T, YU H T, et al. Progress of preparation method and application of graphene/carbon nanotube com-posite[J]. Chemistry & Bioengineering, 2017, 34(2):1-5 (in Chinese).
[8]  TUNG V C, CHEN L M, ALLEN M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano Letters, 2009, 9(5):1949-1955.
[9]  HARUYAMA J. Novel quantum phenomena in carbon nanotubes; superconductivity, one-dimensional electron correlations, and spin quantum bits[J]. Journal of Computational & Theoretical Nanoscience, 2010, 7(9):1688-1706.
[10]  NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308.
[11]  顾善群, 李金焕, 王海洋, 等. 石墨烯/纳米银复合材料的制备、微结构及其导电性能[J]. 复合材料学报, 2015, 32(4):1061-1066. GU S Q, LI J H, WANG H Y, et al. Preparation of graphene/nano-Ag composite, microstructure and electrical property[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1061-1066 (in Chinese).
[12]  YANG W L, GAO Z, WANG J, et al. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for super-capacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(12):5443-5454.
[13]  HUMMERS W, OFFEMAN R. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80:1339.
[14]  刘茜秀, 吕春祥, 李倩. 炭布基底上β-Ni(OH)2纳米片的水热合成及电化学性能[J]. 新型炭材料, 2017, 32(2):116-122. LIU Q X, LV C X, LI Q. The hydrothermal synthesis of β-Ni(OH)2 nanoflakes on carbon cloth and their electrochemical properties[J]. New Carbon Materials, 2017, 32(2):116-122 (in Chinese).
[15]  LEE J W, AHN T, SOUNDARARAJAN D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior[J]. Chemical Communications, 2011, 47(22):6305-6307.
[16]  SHAHROKHIAN S, MOHAMMADI R, AMINI M K. In-situ electrochemical exfoliation of highly oriented pyrolytic graphite as a new substrate for electrodeposition of flower like nickel hydroxide:Application as a new high-performance supercapacitor[J]. Electrochimica Acta, 2016, 206:317-327.
[17]  SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975):213-216.
[18]  KIM J, KIM Y, PARK S J, et al. Preparation and electrochemical analysis of graphenenanosheets/nickel hydroxide composite electrodes containing carbon nanotubes[J]. Journal of Industrial & Engineering Chemistry, 2016, 36:139-146.
[19]  CHEN X A, CHEN X H, ZHANG F Q, et al. One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2, composites for high performance electrochemical supercapacitor[J]. Journal of Power Sources, 2013, 243:555-561.
[20]  SHENG K X, XUYX, LI C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Materials, 2011, 26(1):9-15.
[21]  易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703. YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4):689-703 (in Chinese).
[22]  ZHANG LL, XIONG Z G, ZHAO X S. A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance[J]. Journal of Power Sources, 2013, 222(2):326-332.
[23]  YAN J, WEI T, FENG J, et al. One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets[J]. Carbon, 2012, 50(6):2356-2358.
[24]  MIN S D, ZHAO C J, CHEN G R, et al. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors[J]. Electrochimica Acta, 2014, 115(3):155-164.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133