全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米MgO/LDPE及SiO2/LDPE复合介质潮气吸附机制及其对直流电导特性的影响
Moisture adsorption mechanism of nano MgO/LDPE and nano SiO2/LDPE composite and its effect on direct current conduction properties

DOI: 10.13801/j.cnki.fhclxb.20171114.008

Keywords: 复合介质,纳米SiO2,纳米MgO,潮气,介电性能
composite
,nano SiO2,nano MgO,moisture,dielectric properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究纳米复合介质的吸潮特性及其对介电性能的影响,应用Materials Studio仿真分析MgO及SiO2纳米粉末对水分子的吸附能,探讨了相关的吸潮机制及纳米MgO和纳米SiO2粉末的吸潮特性,对吸潮前后MgO/低密度聚乙烯(LDPE)和SiO2/LDPE复合介质介电性能的变化进行了试验研究。研究结果表明,水分子在氧化物表面的吸附点位主要是O原子,由于纳米SiO2属无定形,水分子可渗入SiO2纳米粒子内部与更多的O原子形成吸附作用,纳米SiO2具有更大的吸潮量。由于纳米MgO对水分子的吸附能大于纳米SiO2对水分子的吸附能,水分子更难被移除。纳米MgO/LDPE和纳米SiO2/LDPE复合介质较LDPE更易吸潮,其原因是纳米粒子吸附水分子能力较强所致。吸潮对MgO/LDPE和纳米SiO2/LDPE复合介质的介电性能有较大影响,吸潮后复合介质的电流密度值明显上升,水分子的存在可能破坏了原有界面区的紧密结构和荷电特性,削弱了复合介质对载流子迁移的抑制能力。当测试温度增加至60℃以上,受潮后复合介质吸附的水分子基本被移除,纳米MgO/LDPE和SiO2/LDPE复合介质的电流密度值恢复到同干燥试样的电流密度值基本一致。 To understand the moisture absorption properties and its influence on composite, the adsorption energy of water molecules on the surface of nano MgO and SiO2 particles was calculated by Materials Studio simulation software. The relevant mechanisms of moisture absorption were discussed and the changes of the dielectric properties for dry and wet composite were studied. The simulation results show that water molecules are mainly absorbed by the oxygen atom on the surface of oxide. Because water molecules can penetrate into the amorphous SiO2 nanoparticles to form more adsorption so the nano SiO2 has a greater amount of moisture absorption. Due to nano MgO has larger water molecules absorption energy compared with nano SiO2, so the adsorbed water molecules in nano SiO2 are more difficult to be removed. The nano MgO/low-density polyethylene(LDPE) and nano SiO2/LDPE composites could absorb more water molecules than LDPE. The moisture absorption has a negative influence for the dielectric properties of composite. When MgO/LDPE and SiO2/LDPE composite get wet, the conductivity increases. The presence of water molecules may destroy the tight structure and charge characteristics of the original interface region, and weaken the ability of the composite to suppress the carrier migration. When the test temperature increases to above 60℃, the adsorbed water molecules in MgO/LDPE and SiO2/LDPE composite medium are basically removed, and the conductivity of composite recovers. 国家自然科学基金(51337002);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2016162)

References

[1]  ROY M, NELSON J K, MACCRONE R K, et al. Candidate mechanisms controlling the ectrical characteristics of silica/XLPE nanodielectrics[J]. Journal of Materials Science, 2007(42):3789-3799.
[2]  程羽佳, 张晓虹, 郭宁, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 复合材料学报, 2016, 33(7):1351-1360. CHENG Y J, ZHANG X H, GUO N, et al. Dielectric properties of nano ZnO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1351-1360(in Chinese).
[3]  LAU K Y, VAUGHAN A S, CHEN G, et al. On the Space charge and DC breakdown behavior of polyethylene/silica nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(1):340-351.
[4]  郑昌佶, 时海涛, 杨佳明, 等. 纳米SiC/低密度聚乙烯复合材料的空间电荷与电导特性[J]. 复合材料学报, 2016, 33(10):2166-2173. ZHENG C J, SHI H T, YANG J M, et al. Space charge and conductive characteristics of nano-SiC/low density polythylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2166-2173(in Chinese).
[5]  万立骏. 固体表面分子组装[M]. 北京:科学出版社, 2014. WAN L J. Solid surface molecular assembly[M]. Beijing:Science Press, 2014(in Chinese).
[6]  陈季丹, 刘子玉. 电介质物理学[M]. 北京:机械工业出版社, 1982. CHEN J D, LIU Z Y. Dielectric physics[M]. Beijing:China Machine Press, 1982(in Chinese).
[7]  雷清泉, 盛守国. 温度及湿度对不同应力模式下低密度聚乙烯薄膜电击穿强度的影响[J]. 电工技术学报, 1990(4):49-53. LEI Q Q, SHENG S G. Effect of temperature and humidity on electrical breakdown strength of low-density polyethylene film for various stressing modes[J]. Transactions of China Electrotechnical Society, 1990(4):49-53(in Chinese).
[8]  LEWIS T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. Dielectrics & Electrical Insulation IEEE Transactions on, 2004, 11(5):739-753.
[9]  ZHENG C, ZHANG W, ZHAO H, et al. Assessment of nano dielectrics interface charge by electrokinetic sonic amplitude and atom force microscopy[J]. Dielectrics & Electrical Insulation IEEE Transactions on, 2014, 21(4):1493-1500.
[10]  SEILER J, KINDERSBERGER J. Insight into the interphase in polymer nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(2):537-547.
[11]  DESCHLER J, SEILER J, KINDERSBERGER J. Detection of charges at the interphase of polymeric nanocomposite[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(2):1027-1037.
[12]  MURATA Y. Investigation of electrical phenomena of inorganic-filler/LDPE nanocomposite material[C]//Proceedings of 2005 International Symposium on Electrical Insulating Materials. Kitakyushu:IEEE, 2005:650-653.
[13]  杨佳明, 王暄, 韩宝忠, 等. LDPE纳米复合介质的直流电导特性及其对高压直流电缆中电场分布的影响[J]. 中国电机工程学报, 2014, 34(9):1454-1461. YANG J M, WANG X, HAN B Z, et al. DC conductivity characteristic of LDPE nanocomposite and its effect on electric field distribution in HVDC cables[J]. Proceedings of the CSEE, 2014, 34(9):1454-1461(in Chinese).
[14]  TANAKA T, BULINSKI A, CASTELLON J, et al. Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(5):1484-1517.
[15]  TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. Dielectrics & Electrical Insulation IEEE Transactions on, 2005, 12(4):669-681.
[16]  MURAKAMI Y, NEMOTO M, NAGAO M, et al. DC conduction and electrical breakdown of MgO/LDPE nano composite[J]. IEEE Dielectrics and Electrical Insulation, Society, 2008, 15(1):33-38.
[17]  MAEZAWA T, KISHI Y, TANAKA Y, et al. Dependence of filler size on space charge formation in LDPE/MgO under high electric field at high temperature[C]//Proceedings of 2008 International Symposium on Electrical Insulating Materials. Yokkaichi:IEEE, 2008:139-142.
[18]  HAYASE Y, AOYAMA H, TANAKA Y, et al. Space charge formation in LDPE/MgO nano-composite thin film under ultra-high DC electric stress[C]//8th International Conference on Properties and applications of Dielectric Materials. Bali:IEEE, 2006:159-162.
[19]  王思蛟, 巫运辉, 查俊伟, 等. 纳米MgO/低密度聚乙烯高压直流电缆复合材料的制备与性能[J]. 复合材料学报, 2016, 33(6):1179-1185. WANG S J, WU Y H, ZHA J W, et al. Preparation and properties of nano MgO/low density polyethylene composites for high-voltage direct current cables[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1179-1185(in Chinese).
[20]  赵洪, 徐明忠, 杨佳明, 等. MgO/LDPE纳米复合材料耐空间电荷及电树枝化特性[J]. 中国电机工程学报, 2012, 32(16):196-202. ZHAO H, XU M Z, YANG J M, et al. Space charge and electric treeing resistance properties of MgO/LDPE nanocomposite[J]. Proceedings of the CSEE, 2012, 32(16):196-202(in Chinese).
[21]  吴建东, 尹毅, 兰莉, 等. 纳米填充浓度对LDPE/Silica纳米复合介质中空间电荷行为的影响[J]. 中国电机工程学报, 2012, 32(28):177-183. WU J D, YIN Y, LAN L, et al. The influence of nano-filler concentration on space charge behavior in LDPE/silica nano composites[J]. Proceedings of the CSEE, 2012, 32(28):177-183(in Chinese).
[22]  ZOU C, FOTHERGILL J C. The effect of absorption on the dielectric properties of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1):106-117.
[23]  FABIANI D, MONTANARI G C. Effect of aspect ratio and water contamination on the electric properties of nanostructured insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1):221-229.
[24]  J?VERBERG N, EDIN H. Dielectric properties of alumina-filled poly(ethylene-co-butyl acrylate) nanocomposites part Ⅱ wet studies[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2):391-398.
[25]  YANG J M, WANG X, ZHAO H, et al. Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4):1957-1964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133