|
- 2018
碳纳米管/平面各向异性羰基铁复合材料的液相共混法制备及其电磁性能
|
Abstract:
采用机械球磨法制备了平面各向异性羰基铁(Planar Anisotropic Carbonyl Iron,PACI),然后通过液相共混法制备了碳纳米管(CNTs)/PACI复合材料。采用同轴法测定CNTs/PACI复合材料在2~18 GHz频段内的复介电常数和复磁导率,研究了CNTs掺杂量对复合材料电磁性能的影响。结果表明:CNTs/PACI复合材料相对于PACI具有更高的复介电常数和衰减常数,随着CNTs质量分数的提高,复合材料的复介电常数和衰减常数逐渐增大,特征阻抗则逐渐减小。CNTs掺杂能够有效提高CNTs/PACI复合材料的吸波性能,通过调整厚度和CNTs掺杂量可以对复合材料的吸波性能进行有效调控。厚度为1.2 mm、CNTs质量分数为2wt%和厚度为1.6 mm、CNTs质量分数为0.5wt%的CNTs/PACI复合材料在Ku波段(12~18 GHz)的反射率均小于-10 dB;厚度为2.0 mm、CNTs质量分数为0.5wt%和1wt%的复合材料反射率小于-10 dB的频带宽分别为5.28 GHz(8.24~13.52 GHz)和5.04 GHz(7.52~12.56 GHz),覆盖整个X波段(8~12 GHz)。 The planar anisotropic carbonyl iron (PACI) was firstly fabricated by mechanical ball milling. Then the carbon nanotubes(CNTs)/PACI composite was prepared by solution blending method. The complex permittivity and complex permeability of the samples between 2-18 GHz were measured through coaxial method. The effects of the CNTs doping content on the electromagnetic properties of CNTs/PACI composites were investigated. The results show that the CNTs/PACI composites have higher complex permittivity and attenuation constant compared with PACI.The complex permittivity and attenuation constant of the composites increase gradually with the increasing mass fraction of CNTs (WCNTs), while the microwave impedance decreases gradually. Doping CNTs can effectively improve the microwave absorption properties of CNTs/PACI composites. Through adjusting the thickness (d) and the CNTs doping content, the microwave absorption properties of the composites can be effectively controlled. When d=1.2 mm and WCNTs=2wt%, or d=1.6 mm and WCNTs=0.5wt%, the reflection loss (RL) of CNTs/PACI composite in Ku band (12-18 GHz) is below -10 dB. When d=2.0 mm, WCNTs=0.5wt% and 1wt%, the bandwidth corresponding to the RL of the composites below -10 dB is 5.28 GHz (8.24-13.52 GHz) and 5.04 GHz (7.52-12.56 GHz) respectively, which covering the entire X band (8-12 GHz). 新世纪优秀人才支持计划(NCET-11-0868);陕西省重点科技创新团队(2014KCT-03);陕西省自然科学基金(2014JM2-5084)
[1] | REN F J, YU H J, WANG L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption[J]. RSC Advances, 2014, 4(28):14419-14431. |
[2] | 刘顾, 汪刘应, 程建良, 等. 碳纳米管吸波材料研究进展[J]. 材料工程, 2015, 43(1):104-112. LIU G, WANG L Y, CHENG J L, et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43(1):104-112 (in Chinese). |
[3] | ZHONG B, SAI T Q, XIA L, et al. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption[J]. Materials and Design, 2017, 121:185-193. |
[4] | REN X H, CHENG Y K. Electromagnetic and microwave absorbing properties of carbonyl iron/BaTiO3 composite absorber for matched load of isolator[J]. Journal of Magnetism and Magnetic Materials, 2015, 393:293-296. |
[5] | MA?ECKI P, KOLMAN K, PIG?OWSKI J, et al. Sol-gel method as a way of carbonyl iron powder surface modification for interaction improvement[J]. Journal of Solid State Chemistry, 2015, 226:224-230. |
[6] | 张琰卿, 丁志荣, 温娇, 等. 羰基铁的球磨改性及性能研究[J]. 南通大学学报(自然科学版), 2015, 14(2):32-37. ZHANG Y Q, DING Z R, WEN J, et al. Properties of flaky carbonyl iron particles produced by ball milling[J]. Journal of Nantong University (Natural Science Edition), 2015, 14(2):32-37 (in Chinese). |
[7] | XU Y, LUO J H, YAO W, et al. Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2015, 636:310-316. |
[8] | 景红霞, 李巧玲, 叶云, 等. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7):38-42. JING H X, LI Q L, YE Y, et al. Preparation and microwave absorbing properties of Fe(CO)5/BaTiO3 composites[J]. Journal of Materials Engineering, 2015, 43(7):38-42 (in Chinese). |
[9] | 李琳, 姚正军, 周金堂. 聚苯胺纳米纤维/锂锌铁氧体复合吸波材料的制备与性能[J]. 复合材料学报, 2016, 33(4):814-820. LI L, YAO Z J, ZHOU J T. Preparation and property of polyaniline nanofibers/lithium zinc ferrite composite absorbents[J]. Acta Materiae Compositae Sinica, 2016, 33(4):814-820 (in Chinese). |
[10] | 刘建华, 周新楣, 李松梅. 羰基铁/导电聚苯胺微管复合材料的电磁性能[J]. 复合材料学报, 2005, 22(3):70-74. LIU J H, ZHOU X M, LI S M. Electromagnetic properties of carbonyl iron/polyaniline microtubules[J]. Acta Materiae Compositae Sinica, 2005, 22(3):70-74 (in Chinese). |
[11] | 熊国宣, 邓雪萍, 曾东海, 等. 羰基铁粉/聚甲基丙烯酸甲酯/聚苯胺复合吸波剂的制备与性能[J]. 复合材料学报, 2008, 25(4):35-39. XIONG G X, DENG X P, ZENG D H, et al. Property and preparation of carbonyl iron powder/polymethacrylate/poly-aniline composite absorbents[J]. Acta Materiae Compositae Sinica, 2008, 25(4):35-39 (in Chinese). |
[12] | QING Y C, ZHOU W C, LUO F, et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J]. Carbon, 2010, 48(14):4074-4080. |
[13] | XU Y G, ZHANG D Y, CAI J, et al. Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles[J]. Journal of Materials Science & Technology, 2012, 28(1):34-40. |
[14] | 刘琪, 朱冬梅, 周万城, 等. 高能球磨法制备片状羰基铁及其电磁性能研究[J]. 热加工工艺, 2013, 42(2):1-4. LIU Q, ZHU D M, ZHOU W C, et al. Electromagnetic properties of flaky carbonyl iron particles produced by high-energy ball milling[J]. Hot Working Technology, 2013, 42(2):1-4 (in Chinese). |
[15] | XU Y, LUO J H, YAO W, et al. Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2015, 636:310-316. |
[16] | CAO M S, ZHU J, YUAN J, et al. Computation design and performance prediction towards a multi-layer microwave absorber[J]. Materials & Design, 2002, 23(6):557-564. |
[17] | YUAN J, HOU Z L, YANG H J, et al. High dielectric loss and microwave absorption behavior of multiferroic BiFeO3 ceramic[J]. Ceramics International, 2013, 39(6):7241-7246. |
[18] | TONG G X, WU W H, HUA Q, et al. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges[J]. Journal of Alloys and Compounds, 2011, 509(2):451-456. |
[19] | 李晓光, 吕华良, 姬广斌, 等. 球磨钢珠配比对片状羰基铁粉吸波性能影响的研究[J]. 航空材料学报, 2013, 33(5):46-53. LI X G, LV H L, JI G B, et al. Effect of milling steel ball ratio on microwave absorbing properties of flake carbonyl iron[J]. Journal of Aeronautical Materials, 2013, 33(5):46-53 (in Chinese). |
[20] | MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology, 2010, 70(2):400-409. |
[21] | YIN C L, FAN J M, BAI L Y, et al. Microwave absorption and antioxidation properties of flaky carbonyl iron passivated with carbon dioxide[J]. Journal of Magnetism and Magnetic Materials, 2013, 340:65-69. |
[22] | FANG J Y, LIU T, CHEN Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber[J]. Nanoscale, 2016, 8(16):8899-8909. |
[23] | LIU G, WANG L Y, CHEN G M, et al. Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber[J]. Journal of Alloys and Compounds, 2012, 514:183-188. |
[24] | HOU Z L, ZHANG M, KONG L B, et al. Microwave permittivity and permeability experiments in high-loss dielectrics:Caution with implicit Fabry-Perot resonance for negative imaginary permeability[J]. Applied Physics Letters, 2013, 103(16):162905. |