|
- 2018
淡水鱼鳞片的结构及拉伸力学行为
|
Abstract:
硬骨鱼鳞片在长时间的自然进化过程中变得超薄、轻质,并具有良好的韧性。为了揭示其结构和力学性能,本文对产自新西兰的两种鱼鳞(鲤鱼、金鱼)进行了研究。首先对两种鳞片的形貌、横截面及其多级结构进行观察,然后对鳞片试样进行轴向拉伸测试。结果表明,鲤鱼和金鱼鳞片不同部位的表面形貌差异明显,而两种鳞片均由硬质骨质外层和软质胶原内层组成。鲤鱼鳞片应力在拟直线段后有小范围的下降,然后继续上升,直至达到峰值后降至零。对于金鱼鳞片,其应力在拟直线段后继续增加,达到峰值后逐渐降为零。比较两种鱼鳞的力学性能参数,金鱼鳞片的强度高于鲤鱼鳞片,但鲤鱼鱼鳞的延性优于金鱼鱼鳞。 During the long-term natural evolution, the scales of teleost fish become ultra-thin and lightweight and have a good flexibility as well. In order to reveal the structure and mechanism of scales, two scales of fish (cyprinus carpio, carassius auratus) from New Zealand were studied in this paper. Firstly, the surface morphology, cross-section and hierarchical structure of two fish scales were investigated. Then, uniaxial tensile tests were conducted. The results show that the surface morphologies of two scales are various from different location of scales, while two scales are both consist of outer hard bony layer and inner soft collagen layer. For cyprinus carpio scales, through a quasi-linear region from the stress-strain curves, the stress of samples softens slightly before reaching the first peak stress, after which the stress drops to zero. While the stress of carassius auratus scales increases through a quastic-linear region, and then reaches the peak, lastly drops to zero gradually. Comparing the mechanical parameters between cyprinus carpio scales and carassius auratus scales, it's suggested that the tensile strength of carassius auratus scales is superior to that of cyprinus carpio scales. However, the ductility of cyprinus carpio scales has a prior ductility than the carassius auratus scales. 装备预研教育部联合基金(青年人才)项目(6141A02033602);国防科技创新特区项目(17-H863-03-ZT-003-008-06);湖南省重点研发计划项目(2017GK2130)
[1] | LIN Y, WEI C, OLEVSKY E, et al. Mechanical properties and the laminate structure of arapaima gigas scales[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7):1145-1156. |
[2] | YANG W, GLUDOVATZ B, ZIMMERMANN E A, et al. Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales[J]. Acta Biomaterialia, 2013, 9(4):5876-5889. |
[3] | GARRANO A M C, LA ROSA G, ZHANG D, et al. On the mechanical behavior of scales from Cyprinus carpio[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7:17-29. |
[4] | 刘鹏, 朱德举, 汪俊文. 草鱼鳞片的多级结构及力学性能[J]. 复合材料学报, 2016, 33(3):657-665. LIU Peng, ZHU Deju, WANG Junwen. Experimental study of the multiscale structure and mechanical properties of fish scale from grass carp[J]. Acta Materiae Composite Sinica, 2016, 33(3):657-665(in Chinese). |
[5] | LIU P, ZHU D, WANG J, et al. Structure, Mechanical behavior and puncture resistance of grass carp scales[J]. Journal of Bionics Engineering, 2017, 14(2):356-368. |
[6] | HIGHT T K, BRANDEAU J F. Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation[J]. Journal of Biomechanics, 1983, 16(6):445-450. |
[7] | HIBBELER R C. 材料力学[M]. 第六版. 重庆:重庆大学出版社, 2007. HIBBELER R C. Mechanics of materials[M]. 6th Edition, Chongqing:Chongqing University Press, 2007(in Chinese). |
[8] | CHEN P Y, MCKITTRICK J, MEYERS M A. Biological materials:Functional adaptations and bioinspired designs[J]. Progress in Materials Science, 2012, 57(8):1492-1704. |
[9] | 陈斌, 彭向和, 范镜泓. 生物自然复合材料的结构特征及仿生复合材料的研究[J]. 复合材料学报, 2000, 17(3):59-62. CHEN B, PENG X H, FAN J H. Microstructure of natural biocomposites and research of biomimetic composites[J]. Acta Materiae Compositae Sinica, 2000, 17(3):59-62(in Chinese). |
[10] | 任露泉, 梁云虹. 耦合仿生学[M]. 科学出版社, 2012. REN Luquan, LIANG Yunhong. Coupling bionics[M]. Science Press, 2012(in Chinese). |
[11] | 杨文, 李小武, 张广平, 等. 生物贝壳在静态/动态三点弯曲载荷下的性能表征[J]. 人工晶体学报, 2009(s1):271-274. YANG W, LI X W, ZHANG G P, et al. Perfomance characterization of biological shell in static/dynamic in three point bending loads[J]. Journal of Synthetics Crystals, 2009(s1):271-274(in Chinese). |
[12] | ZHU D, ORTEGA C F, MOTAMEDI R, et al. Structure and mechanical performance of a "modern" fish scale[J]. Advanced Engineering Materials, 2012, 14(4):185-194. |
[13] | YANG W, CHEN I H, GLUDOVATZ B, et al. Natural flexible dermal armor[J]. Advanced Materials, 2013, 25(1):31-48. |
[14] | MEYERS M, LIN Y, OLEVSKY E, et al. Battle in the Amazon:Arapaima versus piranha[J]. Advanced Engineering Materials, 2012, 14(5):279-288. |
[15] | BRUET B J, SONG J, BOYCE M C, et al. Materials design principles of ancient fish armour.[J]. Nature Materials, 2008, 7(9):748. |
[16] | IKOMA T, KOBAYASHI H, TANAKA J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major[J]. Journal of Structural Biology, 2003, 142(3):327-333. |
[17] | BIGI A, BURGHAMMER M, FALCONI R, et al. Twisted plywood pattern of collagen fibrils in teleost scales:An X-ray diffraction investigation[J]. Journal of Structural Biology, 2001, 136(2):137-143. |
[18] | LIU W, ZHANG Y, LI G, et al. Structure and composition of teleost scales from snakehead Channa argus (Cantor) (Perciformes:Channidae)[J]. Journal of Fish Biology, 2008, 72(4):1055-1067. |
[19] | 高聚琼, 陈东辉, 孙霁宇, 等. 鲤鱼鳞片断面的微观结构及纳米力学性能[J]. 农机化研究, 2006(11):147-150. GAO J Q, CHEN D H, SUN J Y, et al. Microstructure and nano-indentation hardness of transverse section of cyprinus carpio haematopterus scale[J]. Journal of Agricultural Mechanization Research, 2006(11):147-150(in Chinese). |
[20] | ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(4):2634. |