|
- 2018
碳纤维/聚乳酸复合材料的结晶性能和流变特性
|
Abstract:
以碳纤维(CF)作填料,制备了CF/聚乳酸(CF/PLA)复合材料,CF的质量比(CF∶PLA)为1%、3%、5%、10%和15%。研究了PLA及CF/PLA复合材料的结晶性能和流变特性。结果表明,质量比≤3%时,CF在基体中起到了异相成核的作用,提高了PLA的结晶性能,XRD衍射峰强度增强,CF/PLA复合材料结晶温度和结晶度分别提高到112.5℃和30.7%,流变特性与纯PLA相似。CF的质量比增加到5%时,达到"渗流阈值",黏度激增,限制了分子链段的自由运动,导致CF/PLA复合材料结晶性能下降。CF质量比为15%时,CF/PLA复合材料结晶温度降低至93.1℃,结晶度只有2.5%。 Carbon fiber/poly (lactic acid) (CF/PLA) composites were prepared by using CF as filler. The mass ratio of CF(CF:PLA) were 1%, 3%, 5%, 10% and 15%. Crystallinity and rheological properties of PLA and CF/PLA composites were investigated. The results show that, CF/PLA composites with 1% and 3% CF can improve the overall crystallinity of PLA at cooling process due to the heterogeneous nucleation mechanism. The intensity of XRD diffraction peaks gets stronger. The crystallization temperature and crystallinity respectively of CF/PLA composites increase to 112.5℃ and 30.7%. And the rheological properties are similar to those of pure PLA. When the mass ratio of CF increases to 5%, which is the "percolation threshold", the viscosity of CF/PLA composites gets a sharp rise. The movements of molecular segments are limited, leading a decrease in crystallinity of PLA. When the mass ratio of CF is 15%, the crystallization temperature of CF/PLA composites reduces to 93.1℃ and the crystallinity is only 2.5%. 太原工业学院青年科学基金(2016LQ12);太原工业学院大学生创新创业训练项目(GK20170097)
[1] | 顾书英, 任杰, 袁华. 聚乳酸及其共聚物、共混物的流变特性[J]. 高分子材料科学与工程, 2005, 21(4):224-227. GU S Y, REN J, YUAN H. Studies on the rheological behaviors of poly lactic acid and its copolymers and blends[J]. Polymeric Materials Science and Engineering, 2005, 21(4):224-227(in Chinese). |
[2] | LIU Q, ZHANG H, ZHU M, et al. Blends of polylactide/thermoplactic elastomer:Miscibility, physical aging and crystallization behaviors[J]. Fibers and Polymers, 2013, 14(10):1688-1698. |
[3] | 徐阳, 孙志丹, 陈晓浪, 等. 结晶温度对左旋聚乳酸的晶体改性和晶体形貌的影响[J]. 功能材料, 2012, 43(16):2138-2141. XU Y, SUN Z D, CHEN X L, et al. Effect of crystallization temperature on crystal modifications and crystallization morphology of poly(L-lactic acid)[J]. Journal of Functional Materials, 2012, 43(16):2138-2141(in Chinese). |
[4] | 胡建鹏, 郭明辉. 木质素磺酸铵对聚乳酸/木纤维可生物降解复合材料力学与热性能的影响[J]. 复合材料学报, 2015, 32(3):657-664. HU J P, GUO M H. Influence of ammonium lignosulphonate on mechanical and thermal properties of polylactic acid/wood fiber biodegradable composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):657-664(in Chinese). |
[5] | 郑霞, 李新功, 吴义强, 等. 竹纤维/聚乳酸可生物降解复合材料自然降解性能[J]. 复合材料学报, 2014, 31(2):362-367. ZHENG X, LI X G, WU Y Q, et al. Natural degradation properties of bamboo fibers/polyactic acid biodegradable composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):362-367(in Chinese). |
[6] | 沈烈, 乔飞, 张宇强, 等. 炭纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能[J]. 复合材料学报, 2007, 24(5):61-65. SHEN L, QIAO F, ZHANG Y Q, et al. Mechanical properties and degradation properties in vitro of carbon fiber reinforced hydroxyapatite/polylactide composite[J]. Acta Materiae Compositae Sinica, 2007, 24(5):61-65(in Chinese). |
[7] | LIU B, DU Z, WANG X, et al. Crystallization kinetics of chain extended poly(lactic acid)/clay nanocomposites[J]. Polymer Composites, 2014, 36(11):2123-2134. |
[8] | ZHANG Q, SHI L, NIE J, et al. Study on poly(lactic acid)/natural fibers composites[J]. Journal of Applied Polymer Science, 2012, 125(S2):E526-E533. |
[9] | YIN X, WANG L, LI S, et al. Preparation and characterization of carbon fiber/polylactic acid/thermoplastic polyurethane (CF/PLA-PLA) composites prepared by a vane mixer[J]. Journal of Polymer Engineering, 2017, 37(4):355-364. |
[10] | BISHAI M, DE S, ADHIKARI B, et al. Copolymerization of lactic acid for cost-effective PLA synthesis and studies on its improved characteristics[J]. Food Science and Biotechno-logy, 2013, 22(1):73-77. |
[11] | MURARIU M, FERRERIA A D S, ALEXANDRE M, et al. Polylactide (PLA) designed with desired end-use properties 1:PLA compositions with low molecular weight ester-like plasticizers and related performances[J]. Polymers for Advanced Technologies, 2008, 19(6):636-646. |
[12] | SPINELLA S, RE G L, LIU B, et al. Polylactide/cellulose nanocrystal nanocomposites:Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement[J]. Polymer, 2015, 65:9-17. |
[13] | ARIAS A, HEUZEY M C, HUNEATULT M A, et al. Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites[J]. Cellulose, 2015, 22(1):483-498. |
[14] | CHEN C K, LIN W J, HSIA Y, et al. Synthesis of polylactide-based core-shell interface cross-linked micelles for anticancer drug delivery[J]. Macromolecular Bioscience, 2016. |
[15] | 闫丽丽, 乔妙杰, 雷忆三, 等. 化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J]. 复合材料学报, 2013, 30(2):44-49. YAN L L, QIAO M J, LEI Y S, et al. EMI shielding effectiveness of electroless nickel-plated carbon fibers/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):44-49(in Chinese). |