|
- 2018
水泥砂浆固化粉质黏土分离式Hopkinson压杆试验与分析
|
Abstract:
为研究掺砂量(与干土的质量比)对水泥粉质黏土冲击压缩强度及能量吸收特征的影响,采用Φ 50 mm分离式Hopkinson压杆(Split Hopkinson pressure bar,SHPB)试验装置对不同掺砂量的水泥粉质黏土进行了0.4 MPa冲击气压下的冲击压缩试验。结果表明:普通水泥粉质黏土(未掺砂)动态应力-应变曲线大致分为弹性阶段、屈服硬化阶段及破坏阶段,而随着掺砂量的逐渐增加,水泥砂浆固化粉质黏土动态应力-应变曲线中屈服阶段愈加不明显,出现了理想的塑性阶段;水泥砂浆固化粉质黏土的冲击压缩强度随掺砂量的增大而先增大后减小,在掺砂量为10%时达到最大平均动强度9.56 MPa,较普通水泥土强度提高9.79%;水泥砂浆固化粉质黏土的吸收能随冲击压缩强度的增大而增大,两者具有较好的指数关系。 To study the effects of sand content on dynamic compression strength and energy absorption characteristics of cemented silty clay, dynamic compression tests on cemented silty clay with different sand contents were conducted using Φ 50 mm split Hopkinson pressure bar (SHPB) apparatus under 0.4 MPa impact pressure. The results show that the dynamic stress-strain curve of plain cemented silty clay (without sand) can be divided into three stages of elastic deformation, yield-hardening and failure. With the increase of sand content, there is an ideal plastic stage occurring on dynamic stress-strain curve but not obvious for yield stage gradually. In addition, the dynamic compression strength of silty clay stabilized by cement mortar increases firstly and then decreases with the increasing of sand content. The maximum of dynamic compression strength of silty clay stabilized by cement mortar is 9.56 MPa at sand content of 10%, which results in 9.79% increase compared with plain cement-soil. The absorbed energy of silty clay stabilized by cement mortar increases with the increase of dynamic compression strength, which shows an approximate exponential relation. 安徽理工大学研究生创新基金(2017CX2020)
[1] | 宋新江, 徐海波, 周文渊, 等. 水泥土应力-应变特性真三轴试验研究[J]. 岩土力学, 2016, 37(9):2489-2495. SONG Xinjiang, XU Haibo, ZHOU Wenyuan, et al. True triaxial test on stress-strain characteristics of cement-soil[J]. Rock and Soil Mechanics, 2016, 37(9):2489-2495(in Chinese). |
[2] | 唐朝生, 顾凯. 聚丙烯纤维和水泥加固软土的强度特性[J]. 土木工程学报, 2011, 44(s1):5-8. TANG Chaosheng, GU Kai. Strength behaviour of polypropylene fiber reinforced cement stabilized soft soil[J]. China Civil Engineering Journal, 2011, 44(s1):5-8(in Chinese). |
[3] | 王文军, 朱向荣, 方鹏飞. 纳米硅粉水泥土固化机理研究[J]. 浙江大学学报(工学版), 2005, 39(1):148-153. WANG Wenjun, ZHU Xiangrong, FANG Pengfei. Analysis on reinforcement mechanism of nanometer silica fume reinforced cemented clay[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(1):148-153(in Chinese). |
[4] | 王立峰, 黄洪勉. 纳米硅水泥土弹塑性有限元分析[J]. 岩土力学, 2009, 30(1):143-146. WANG Lifeng, HUANG Hongmian. Elastoplastic finite element analysis of nanometer silicon and cement-stabilized soils[J]. Rock and Soil Mechanics, 2009, 30(1):143-146(in Chinese). |
[5] | 裴向军, 黄润秋, 靖向党. 活化粉煤灰抑制高矿化度水泥土膨胀的研究[J]. 岩土力学, 2005, 26(3):370-374. PEI Xiangjun, HUANG Runqiu, JING Xiangdang. Study on inhibiting soil-cement expansion with activated fly-ash in high degree of mineralization zone[J]. Rock and Soil Mechanics, 2005, 26(3):370-374(in Chinese). |
[6] | 鹿群, 郭少龙, 王闵闵, 等. 纤维水泥土力学性能的试验研究[J]. 岩土力学, 2016, 37(s2):421-426. LU Qun, GUO Shaolong, WANG Minmin, et al. Experimental study of mechanical properties of fiber cement soil[J]. Rock and Soil Mechanics, 2016, 37(s2):421-426(in Chinese). |
[7] | 陈峰. 玄武岩纤维水泥土抗拉性能试验研究[J]. 深圳大学学报(理工版), 2016, 33(2):188-193. CHEN Feng. Experiment research on tensile strength of basalt fiber cement-soil[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(2):188-193(in Chinese). |
[8] | 吴亚明, 于广云, 赵红平. 废纸浆纤维水泥土力学性能初探[C]. 北京力学会第20届学术年会, 北京:北京力学会, 2014. WU Yaming, YU Guangyun, ZHAO Hongping. Preliminary study on mechanical properties of waste pulp fiber-reinforced cement soil[C]. Proceedings of the 20th Annual Conference of Beijing Society of Mechanics, Beijing:Beijing Society of Theoretical and Applied Mechanics, 2014(in Chinese). |
[9] | 兰凯, 黄汉盛, 鄢泰宁. 软土型水泥土掺砂试验研究[J]. 水文地质工程地质, 2006, 33(5):113-116. LAN Kai, HUANG Hansheng, YAN Taining. Laboratory test for cement-stabilized soft soil added with sand[J]. Hydrogeology & Engineering Geology, 2006, 33(5):113-116(in Chinese). |
[10] | 范晓秋, 洪宝宁, 胡昕, 等. 水泥砂浆固化土物理力学特性试验研究[J]. 岩土工程学报, 2008, 30(4):605-610. FAN Xiaoqiu, HONG Baoning, HU Xin, et al. Physico-mechanical properties of soils stabilized by cement mortar[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4):605-610(in Chinese). |
[11] | 王海龙, 申向东, 王萧萧, 等. 水泥砂浆固化粉质黏土力学性能及微观结构的试验研究[J]. 岩石力学与工程学报, 2012, 31(s1):3264-3269. WANG Hailong, SHEN Xiangdong, WANG Xiaoxiao, et al. Experimental research of mechanical properties and microstructure for silty clay stabilized by cement mortar[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(s1):3264-3269(in Chinese). |
[12] | 曲涛, 范晓秋, 刘鑫. 水泥砂浆固化土抗压强度特性试验[J]. 河海大学学报(自然科学版), 2012, 40(2):173-179. QU Tao, FAN Xiaoqiu, LIU Xin. Experimental study of compressive strength properties of soils stabilized by cement mortar[J]. Journal of Hohai University (Natural Sciences), 2012, 40(2):173-179(in Chinese). |
[13] | 赫文秀, 申向东. 掺砂水泥土的力学特性研究[J]. 岩土力学, 2011, 32(s1):392-396. HE Wenxiu, SHEN Xiangdong. Mechanical behavior of soil-sand-cement admixture[J]. Rock and Soil Mechanics, 2011, 32(s1):392-396(in Chinese). |
[14] | JAMSHIDI R J, LAKE C B, BARNES C L. Examining freeze/thaw cycling and its impact on the hydraulic performance of cement-treated silty sand[J]. Journal of Cold Regions Engineering, 2015, 29(3):04014014. |
[15] | KUTANAEI S S, CHOOBBASTI A J. Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand[J]. Journal of Materials in Civil Engineering, 2016:04016230. |
[16] | 刘军忠, 翁兴中, 张俊, 等. 简易机场纤维格栅-水泥土基层使用性能研究[J]. 建筑材料学报, 2014, 17(6):1043-1048. LIU Junzhong, WENG Xingzhong, ZHANG Jun, et al. Research on fiber grid-cement soil base performance of airstrip[J]. Journal of Building Materials, 2014, 17(6):1043-1048(in Chinese). |
[17] | 朱靖塞, 许金余, 白二雷, 等. 复合纳米材料对混凝土动态力学性能的影响[J]. 复合材料学报, 2016, 33(3):597-605. ZHU Jingsai, XU Jinyu, BAI Erlei, et al. Effects of compo-site nanomaterials on dynamic mechanical properties of concretes[J]. Acta Materiae Compositae Sinica, 2016, 33(3):597-605(in Chinese). |
[18] | 吴金荣, 马芹永. 透水沥青混凝土单轴冲击压缩特性研究[J]. 振动与冲击, 2015, 34(4):195-199. WU Jinrong, MA Qinyong. Uniaxial impact compressive characteristics of permeable asphalt concrete[J]. Journal of Vibration and Shock, 2015, 34(4):195-199(in Chinese). |
[19] | 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008, 25(2):135-142. LI Weimin, XU Jinyu, SHEN Liujun, et al. Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar[J]. Acta Materiae Compositae Sinica, 2008, 25(2):135-142(in Chinese). |
[20] | 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3):207-216. SONG Li, HU Shisheng. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3):207-216(in Chinese). |
[21] | 王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25(1):17-25. WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25(1):17-25(in Chinese). |
[22] | YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2):129-150. |
[23] | 李为民, 许金余. 玄武岩纤维增强地质聚合物混凝土的高应变率力学行为[J]. 复合材料学报, 2009, 26(2):160-164. LI Weimin, XU Jinyu. High-strain-rate mechanical behavior of basalt fiber reinforced geopolymeric concrete[J]. Acta Materiae Compositae Sinica, 2009, 26(2):160-164(in Chinese). |
[24] | 高常辉, 马芹永. 玄武岩纤维掺砂水泥土压拉强度的试验分析[J]. 科学技术与工程, 2017, 17(2):262-266. GAO Changhui, MA Qinyong. Experiment and analysis on performance of compression and tension strength for basalt fiber-sand reinforced cement soil[J]. Science Technology and Engineering, 2017, 17(2):262-266(in Chinese). |
[25] | 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17):3003-3010. XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17):3003-3010(in Chinese). |
[26] | 施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5):703-710. SHI Jinsong, XU Jinyu, REN Weibo, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii, 2014, 35(5):703-710(in Chinese). |
[27] | 刘鑫, 郭连军, 徐振洋. 岩石劈裂拉伸试验的能量耗散分析[J]. 爆破, 2016, 33(3):17-22. LIU Xin, GUO Lianjun, XU Zhenyang. Energy dissipation analysis of rock splitting tensile test[J]. Blasting, 2016, 33(3):17-22(in Chinese). |
[28] | 龚晓南. 地基处理技术及发展展望[M]. 北京:中国建筑工业出版社, 2014. GONG Xiaonan. Development and prospect of foundation technology[M]. Beijing:China Architecture and Building Press, 2014(in Chinese). |
[29] | SEDIGHI P, SCHWEIGER H F, WEHR W J. Effect of jet-grout columns on the seismic response of layered soil deposits[J]. International Journal of Geomechanics, 2016, 17(3):04016085. |
[30] | XIAO H, LEE F H, LIU Y. Bounding surface cam-clay model with cohesion for cement-admixed clay[J]. International Journal of Geomechanics, 2017, 17(1):04016026. |