|
- 2018
稻壳纤维粒径和掺量分数对水泥复合材料性能的影响
|
Abstract:
以稻壳纤维(Rice husk fiber,RHF)为增强材料,以水泥为基体,制备了RHF/水泥基复合材料。研究了粒径对RHF在水泥基体中分散性能的影响;并以RHF粒径和掺入质量比为考察因素,采用响应曲面法,以RHF/水泥基复合材料的密度、抗折强度、含水率、吸水率和导热系数为响应值,建立数学模型,对RHF/水泥基复合材料的成型工艺进行优化设计。结果表明:RHF的粒径越小,在水泥基体中分散性能越好,粒径为150 μm的RHF分散系数达到最大值,为0.981;响应曲面模型分析表明RHF的粒径为150 μm、掺入质量为水泥质量的3%时,RHF/水泥基复合材料的性能达到最优,此时RHF/水泥基复合材料的密度为1 559.26 kg/m3,抗折强度为9.38 MPa,含水率为7.05%,吸水率为16.71%,导热系数为0.50 W/(m·K),达到了建筑行业标准JC/T 411—2007的要求。 RHF(Rice husk fiber, RHF) was added into cement as reinforced materials to prepare RHF/cement composites.The effect of particle size on the dispersion properties of RHF in cement matrix was studied. And take the particle size and mass ratio of RHF to cement as factors, the density, flexural strength, water content, water absorption and thermal conductivity of RHF/cement composite as response value, the mathematical model was established using the response surface method, the molding process of RHF/cement composites was optimized. The results show that the smaller particle size of RHF, the better dispersion of RHF in cement, the dispersion coefficient reaches the maximum value of 0.981 when particle size is 150 μm.The response surface model analysis shows that the RHF/cement composite achieves optimal when particle size is 150 μm and mass ratio is 3%, under this process, the density, flexural strength, water content, water absorption and thermal conductivity of RHF/cement reach 1 559 kg/m3, 9.38 MPa, 7.05%, 16.71%, and 0.50W/(m·K), respectively, which are all up to JC/T 411-2007. 天津市科技特派员项目(16JCTPJC44900)
[1] | 于辰龙. 水泥基复合材料弯曲性能及改性机理研究[D]. 青岛:青岛科技大学, 2006. YU Chenlong. The research on bending property and modifying mechanism of cement based composite[D]. Qingdao:Qingdao University of Science and Technology, 2006(in Chinese). |
[2] | 邢锋, 倪卓, 黄战. 微胶囊-玄武岩纤维/水泥复合材料的力学性能[J]. 复合材料学报, 2014, 31(1):133-139. XING Feng, NI Zhuo, HUANG Zhan. Mechanical properties of microcapsule-basalt fiber/cement composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1):133-139(in Chinese). |
[3] | 于占新. 水泥浆液的基本性状及固化原理[J]. 东北水利水电, 2000, 18(8):45-46. YU Zhanxin. Basic properties and solidification principle of cement slurry[J]. Water Resources and Hydropower of Northeast China, 2000, 18(8):45-46(in Chinese). |
[4] | 张国防, 王培铭. 羟乙基甲基纤维素对水泥水化的影响[J]. 同济大学学报(自然科学版), 2009, 37(3):369-373. ZHANG Guofang, WANG Peiming. Effect of hydroxyethyl methyl cellulose on cement paste hydration[J]. Journal of Tongji University(Natural Science), 2009, 37(3):369-373(in Chinese). |
[5] | MILLER D P, MOSLEMI A A. Wood-cement composites:Effect of model compounds on hydration characteristics and tensile strength[J]. Wood and Fiberence, 1991, 23(4):472-482. |
[6] | 周贤康. 水泥木屑板的生产、性能及其应用[J]. 混凝土与水泥制品, 1992(6):40-44. ZHOU Xiankang. The production, performance and application of cement wood chip[J]. China Concrete and Cement Products, 1992(6):40-44(in Chinese). |
[7] | 由世宽, 郎娟. 水泥木屑板的研究与应用[J]. 辽宁建材, 1995(4):16-19. YOU Shikuan, LANG Juan. Research and application of cement wood chips[J]. Liao Ning Building Materials, 1995(4):16-19(in Chinese). |
[8] | 蒋家奋. 浅析混凝土的自收缩[J]. 混凝土与水泥制品, 2001(3):6-7. JIANG Jiafen. Self shrinkage of concrete[J]. China Concrete and Cement Products, 2001(3):6-7(in Chinese). |
[9] | 鞠丽艳. 混凝土裂缝抑制措施的研究进展[J]. 混凝土, 2002(5):11-14. JU Liyan. Research progress of concrete crack control mea-sures[J]. Concrete, 2002(5):11-14(in Chinese). |
[10] | 吴香国, 韩相默, 徐世烺. 超高性能水泥基复合材料弯拉作用下虚拟应变硬化机制分析[J]. 复合材料学报, 2008, 25(2):129-134. WU Xiangguo, HAN Xiangmo, XU Shilang. Pseudo strain hardening model of ultra high performance cementitious composites under flexural loading[J]. Acta Materiae Compositae Sinica, 2008, 25(2):129-134(in Chinese). |
[11] | 李国忠, 于衍真. 植物纤维增强石膏复合材料的微观结构研究[J]. 复合材料学报, 1997, 14(3):72-76. LI Guozhong, YU Yanzhen. Study on microstructure of plant fiber reinforced gypsum composites[J]. Acta Materiae Compositae Sinica, 1997, 14(3):72-76(in Chinese). |
[12] | 曹旭辉, 朱祥, 钟春伟, 等. 稻草纤维/镁水泥复合材料的性能研究[J]. 混凝土, 2010(5):61-63. CAO Xuhui, ZHU Xiang, ZHONG Chunwei, et al. Study on the properties of straw fiber/magnesium cement composites[J]. Concrete, 2010(5):61-63(in Chinese). |
[13] | 朱碧华, 何春霞, 石峰, 等. 三种壳类植物纤维/聚氯乙烯复合材料性能比较[J]. 复合材料学报, 2017, 34(2):291-297. ZHU Bihua, HE Chunxia, SHI Feng, et al. Performance comparison of three kinds of husk's fibers/polyvinyl chloride composite[J]. Acta Materiae Compositae Sinica, 2017, 34(2):291-297(in Chinese). |
[14] | 王桂花, 薄长凯, 张延吉, 等. 各因素对稻草纤维水泥基材料力学性能的影响[J]. 白城师范学院学报, 2016, 30(2):75-77, 82. WANG Guihua, BO Changkai, ZHANG Yanji, et al. Effects of various factors on the mechanical properties of straw fiber cement-based materials[J]. Journal of Baicheng Normal University, 2016, 30(2):75-77, 82(in Chinese). |
[15] | 李家和, 王政, 祝瑜. 水泥基稻草纤维材料性能及结构的研究[J]. 武汉理工大学学报, 2009, 31(5):13-15, 23. LI Jiahe, WANG Zheng, ZHU Yu. Research on properties and structure of cementitious straw fibre composite[J]. Journal of Wuhan University of Technology, 2009, 31(5):13-15, 23(in Chinese). |
[16] | 中华人民共和国发展和改革委员会. 水泥木屑板:JC/T 411-2007[S]. 北京:中国建材出版社, 2008. National Development and Reform Commission. Cement-bonded particle-board reinforced with fibrous wood particles:JC/T 411-2007[S]. Beijing:China Building Materials Press, 2008(in Chinese). |
[17] | 吴金焱, 朱书全. 氯氧镁水泥及其制品的研发进展[J]. 中国非金属矿工业导刊, 2006(1):15-18. WU Jinyan, ZHU Shuquan. The development of magnesium oxychloride cement and its products[J]. China Nonmetallic Minerals Industry, 2006(1):15-18(in Chinese). |
[18] | 李珍, 姚书振, 沈上越, 等. 纤维状硅灰石/聚丙烯复合材料界面性能研究[J]. 矿物岩石, 2005, 25(3):67-70. LI Zhen, YAO Shuzhen, SHEN Shangyue, et al. Study on interfacial properties of fibrous wollastonite/polypropylene composites[J]. Journal of Mineralogy and Petrology, 2005, 25(3):67-70(in Chinese). |
[19] | SINGH N K, MISHRA P C, SINGH V K, et al. Effects of hydroxyethyl cellulose and oxalic acid on the properties of cement[J]. Cement & Concrete Research, 2003, 33(9):1319-1329. |
[20] | COLLEPARDI M, BALDINI G, PAURI M, et al. Retardation of tricalcium aluminate hydration by calcium sulfate[J]. Journal of the American Ceramic Society, 1979, 62(1-2):33-35. |
[21] | LEA F M, DESCH C H. The chemistry of cement and concrete[M]. London:Edward Arnold, 1970. |