|
- 2018
利用外方内圆模型预测单向连续纤维增强树脂基复合材料的横向弹性模量
|
Abstract:
为了对连续纤维增强树脂基复合材料的横向弹性模量进行较高精度的解析计算,利用代表性体积单元横截面为正方形基体包裹圆形纤维的外方内圆模型,采用先并联后串联和先串联后并联的两种计算方式进行公式推导,借助于Mathematica软件进行符号积分运算,获得了横向弹性模量的2组解析解,将其中间值作为预测值,给出了预测值的近似公式,并与一组实验数据进行了比较。研究表明,外方内圆模型能较好地反映客观实际,利用Mathematica软件可以解决计算困难的问题;将解析解的中间值作为横向弹性模量的预测值,与一组实验数据比较,显示解析计算的相对误差基本在10%以内;给出的近似公式形式简单,且其曲线能较好地吻合中间值曲线,在纤维体积分数小于75%的范围内,近似公式与中间值公式计算结果之间的最大误差不超过7%。 In order to calculate the transverse elastic modulus of continuous fiber reinforced resin composites with high precision, two analytical solutions of the transverse elastic modulus were obtained, by using the model of circle-in-square, which is the cross-section shape of a representative volume unit that the square matrix wraps a circle fiber, and by derivating formulas using two kinds of calculation method in parallel after series and in series after parallel by means of Mathematica software. The median value of the two analytical solutions was treated as the predictive value, and the approximate formula of the predictive value was given. The research results show that, the model of circle-in-square can better reflect the objective reality, and the Mathematica software can be used to solve the problem of difficult calculation in this project; The median value of the two analytical solutions can be used as the predictive value of the transverse elastic modulus. Compared with a set of experimental data, the relative errors of the median values are basically less than 10%; The form of the approximate formula is simple, and its curve can well fit the median value curve. In the range that the fiber volume fraction is less than 75%, the maximum error between the calculation results of approximate formula and the median value formula is not more than 7%.
[1] | GANESH V V, CHAWLA N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix compo-sites:Experiments and micro structure-based simulation[J]. Materials Science & Engineering A, 2005, 391(1-2):342-353. |
[2] | 田云德, 秦世伦. 复合材料等效弹性模量的改进混合律方法[J]. 西南交通大学学报, 2005, 36(6):783-787. TIAN Y D, QIN S L. Improved mixed-model method of valid elastic modulus of composites[J]. Journal of Southwest Jiaotong University, 2005, 36(6):783-787(in Chinese). |
[3] | ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of the Royal Society, 1957, 241:376-396. |
[4] | ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1959, 252(1271):561-569. |
[5] | MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-576. |
[6] | HOPKINS D A, CHAMIS C C. A unique set of micromechanics equations for high temperature metal matrix compo-sites:NASA TM 87154[R]. USA:National Aeronautics & Space Administration, 1985. |
[7] | CHAMIS C C. Mechanics of composite materials:Past, present and future[J]. Journal of Composites Technology & Research, 1989, 11(1):3-14. |
[8] | HILL R. Theory of mechanical properties of fiber-strengthened materials:I elastic behavior[J]. Journal of the Mecha-nics & Physics of Solids, 1964, 12(4):199-212. |
[9] | HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics & Physics of Solids, 1965, 13(4):213-222. |
[10] | HASHIN Z, ROSEN B W. The elastic moduli of fiber-reinforced materials[J]. Journal of Applied Mechanics, 1964, 31(2):223-232. |
[11] | HASHIN Z. On elastic behavior of fiber-reinforced materials[J]. Journal of the Mechanics & Physics of Solids, 1965, 13(3):119-134. |
[12] | HUANG Z M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites[J]. International Journal of Solid & Structures, 2001, 38(22-23):4147-4172. |
[13] | HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A, 2001, 32(2):143-172. |
[14] | HUANG Z M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites[J]. International Journal of Solid & Structures, 2001, 38(22-23):4147-4172. |
[15] | PALEY M, ABOUDI J. Micromechanics analysis of compo-sites by the generalized cell model[J]. Mechanics of Materials, 1992, 14(2):127-139. |
[16] | 孙志刚, 宋迎东, 高德平. 改进的二维高精度通用单胞模型[J]. 固体力学学报, 2005, 26(2):235-240. SUN Z G, SONG Y D, GAO D P. Efficient reformulation of 2-D high-fidelity generalized method of cells[J]. Acta Mechanica Solida Sinica, 26(2):235-240(in Chinese). |
[17] | SEGURADO J, LLORCA J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(10):2107-2121. |
[18] | ANNAPRAGADA S R, SUN D, GARIMELLA S V. Prediction of effective thermo-mechanical properties of particulate composites[J]. Computational Materials Science, 2007, 40:255-266. |
[19] | 周祝林, 杨云娣. 单向纤维复合材料的弹性常数研究[J]. 玻璃钢, 1995(3):1-12.ZHOU Z L, YANG Y D. Study on elastic constants of unidirectional fiber composites[J]. Fiber Reinforced Plastics, 1995(3):1-12(in Chinese). |
[20] | BENVENISTE Y. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mechanics of Materials, 1987, 6(2):147-157. |