全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

氧化石墨烯纳米片/环氧树脂复合材料的制备与性能
Preparation and properties of graphene oxide nanosheeets/epoxy composites

DOI: 10.13801/j.cnki.fhclxb.20150105.001

Keywords: 氧化石墨烯纳米片,环氧树脂,复合材料,力学性能,介电性能
graphene oxide nanosheets
,epoxy,composites,mechanical properties,dielectric properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化石墨烯(GO)是石墨烯重要的衍生物之一, 通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌, 研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加, GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低, 其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2 ℃提高到424.5 ℃, 而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大, 冲击强度由纯环氧树脂的10.5 kJ/m2提高到19.7 kJ/m2, 弯曲强度由80.5 MPa提高到104.0 MPa。 Graphene oxide (GO) is one of the most important derivatives of graphene. GO nanosheets/epoxy composites were prepared by oxidization and ultrasonic dispersion. The structure and morphology of GO nanosheets were characterized by XRD, Raman spectrum, FTIR and TEM. The effects of GO nanosheet content on the thermal stability, mechanical property and dielectric property of GO nanosheets/epoxy composites were discussed. The results show that the thermal stability of GO nanosheets/epoxy composites is improved by adding GO nanosheets. The impact strength and bending strength first increase and then decrease with increasing GO nanosheets loading. Dielectric constant and dielectric loss first decrease and then increase. The thermal decomposition temperature with 5% mass loss is improved from 400.2 ℃ for the pure epoxy to 424.5 ℃ for the GO nanosheets/epoxy composites with 0.3wt% GO nanosheets loading. Furthermore, the impact strength and bending strength with 0.2wt% and 0.3wt% GO nanosheets loading reach the maximum respectively, increasing from 10.5 kJ/m2 for the pure epoxy to 19.7 kJ/m2 and from 80.5 MPa to 104.0 MPa. 黑龙江省教育厅面上项目(12511067); 黑龙江省大学生创新训练项目(201310214022); 黑龙江省高校科技创新团队建设计划 (2013TD008)

References

[1]  Shen X J, Meng L X, Fu S Y. Cryogenic mechanical properties of epoxy composites synergistically reinforced by graphene-multi-walled carbon nanotubes[J]. Acta Materiae Composite Sinica, 2015, 32(1): 21-26 (in Chinese). 沈小军, 孟令轩, 付绍云. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1): 21-26.
[2]  Qiu S L, Wang Y T, Wang C S, et al. Isothermal curing behaviors of epoxy/graphite oxides nanocomposites[J]. Acta Polymerica Sinica, 2012(1): 25-32 (in Chinese). 仇士龙, 王玉婷, 王成双, 等. 环氧树脂/氧化石墨纳米复合物的等温固化行为研究[J]. 高分子学报, 2012(1): 25-32.
[3]  Yu J H. Study on preparation and properties of polymer-based composites with thermal conductivies[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese). 虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2012.
[4]  Fu L, Liu H B, Zou Y H, et al. Technology research on oxidative degree of graphite oxide prepared by Hummers method[J]. Carbon, 2005(4): 10-14 (in Chinese). 傅玲, 刘洪波, 邹艳红, 等. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]. 炭素, 2005(4): 10-14.
[5]  Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.
[6]  Li Z, Wang R, Young R J, et al. Control of the functionality of graphene oxide for its application in epoxy nanocomposites[J]. Polymer, 2013, 54(23): 6437-6446.
[7]  Kou S W, Yu S H, Sun R, et al. Preparation and dielectric properties of the three-phase composition of graphite oxide/barium titanate/epoxy resin[J]. Journal of Inorganic Materials, 2014, 29(1): 71-76 (in Chinese). 寇思旺, 于淑会, 孙蓉, 等. 氧化石墨/钛酸钡/环氧树脂三相复合材料的制备及其介电性能研究[J]. 无机材料学报, 2014, 29(1): 71-76.
[8]  Singha S, Joy T M. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz[J]. Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 2-11.
[9]  Li J, Ma P, Chow W S, et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Advanced Functional Materials, 2007, 17(16): 3207-3215.
[10]  Tsangaris G M, Psarras G C, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems[J]. Journal of Materials Science, 1998, 33(8): 2027-2037.
[11]  Chen Z K, Yang J P, Nie Q, et al. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties[J]. Polymer. 2009, 50(19): 4753-4762.
[12]  Zhang H, Tang L C, Zhang Z, et al. Fracture behaviors of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer. 2008, 49(17): 3816-3841.
[13]  Wei D, Li Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758.
[14]  Wan Y J, Gong L X, Tang L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64(9): 79-89.
[15]  Wan Y J, Tang L C, Gong L X. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon, 2014, 69(4): 467-480.
[16]  Yu J H, Huo R M, Wu C, et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites[J]. Macromolecular Research, 2012, 20(8): 816-826.
[17]  Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(26): 457-460.
[18]  Marcano D C, Kosynkin D V, Berlin J M. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133