全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

石墨烯基有序介孔金属氧化物复合材料的制备及研究进展
Preparation and research progress of graphene-based ordered mesoporous metal oxide composites

DOI: 10.13801/j.cnki.fhclxb.20150729.004

Keywords: 石墨烯,有序介孔材料,金属氧化物,复合材料,制备
graphene
,ordered mesoporous materials,metal oxide,composites,preparation

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了以石墨烯作为载体, 利用有序介孔金属氧化物特殊的3D结构, 以及两者共存产生的协同效应, 开发系列新型石墨烯基有序介孔金属氧化物复合材料的最新研究进展。介绍了本课题组在有序介孔金属氧化物的可控合成、与石墨烯的有效复合以及复合材料的光电性能等方面的探索性研究。着重对石墨烯基有序介孔金属氧化物复合材料的制备方法、形成机理及其在催化、电化学、传感和能量储存等领域的最新应用进行概述, 并展望了其未来的发展趋势。 We demonstrate the recent research progress of the series novel graphene-based ordered mesoporous metal oxide composites grounded on the special 3D structure of ordered mesoporous metal oxides and the supporter of graphene, as well as the synergistic effect of coexistence. The exploratory study for controlledly synthesis of ordered mesoporous metal oxides, effective combination with graphene and photoelectric properties of composites in our lab were introduced. We outline the preparation method, formation mechanism of graphene-based ordered mesoporous metal oxide composites and their novel applications in catalysis, electrochemistry, sensing and energy storage area. The future developments of graphene-based ordered mesoporous metal oxide composites have also been prospected. 国家自然科学基金(21373143); 江苏省青蓝工程(苏教师〔2012〕16号); 南通市科技计划(BK2014016)

References

[1]  Sreethawong T, Chavadej S, Ngamsinlapasathian S, et al. On the formation of nanocrystalline bimodal mesoporous In2O3 prepared by surfactant-assisted templating sol-gel process[J]. Microporous and Mesoporous Materials, 2008, 109(1): 84-90.
[2]  Zhao L, Yue W, Ren Y. Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for high-performance lithium storage[J]. Electrochimica Acta, 2014, 116: 31-38.
[3]  Ding M J, Huang H, Yang P. Preparation and visible light photocatalytic performance of ordered mesoporous indium dioxide/reduced graphene oxide nanocomposite[J]. Chemical Journal of Chinese Universities, 2015, 36(5): 989-995 (in Chinese). 丁敏娟, 黄徽, 杨平. 有序介孔三氧化二铟/还原氧化石墨烯纳米复合材料的制备及可见光催化性能[J]. 高等学校化学学报, 2015, 36(5): 989-995.
[4]  Zhu H Y, Zheng Z F, Gao X P. Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6·2/3H2O fibers and NaNbO3 cubes[J]. Journal of the American Chemical Society, 2006, 128(7): 2373-2384.
[5]  Gargi A, Reddy G B. Study of surface morphology and optical properties of Nb2O5 thin films with annealing[J]. Journal of Materials Science: Materials in Electronics, 2005, 16(1): 21-24.
[6]  Zander D, Lyubenova L. Influence of the Nb2O5 distribution on the electrochemical hydrogenation of nanocrystalline magnesium[J]. Journal of Alloys and Compounds, 2007, 434-435: 753-755.
[7]  Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves[J]. Inorganic Chemistry, 1996, 35(11): 3126-3136.
[8]  Lee B, Lu D, Kondo J N, et al. Three-dimensionally ordered mesoporous niobium oxide[J]. Journal of the American Chemical Society, 2002, 124(38): 11256-11257.
[9]  Xu X, Tian B Z, Kong J L, et al. Ordered mesoporous niobium oxide film: A novel matrix for assembling functional proteins for bioelectrochemical applications[J]. Advanced Materials, 2003, 15(22): 1932-1936.
[10]  Yue Z K, Chu D M, Huang H, et al. A novel heterogeneous hybrid by incorporation of Nb2O5 microspheres and reduced graphene oxide for photocatalytic H2 evolution under visible light irradiation[J]. RSC Advances, 2015, 5(58): 47117-47124.
[11]  Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly[J]. Advanced Functional Materials, 2011, 21(9): 1717-1722.
[12]  Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[13]  Wang Y, Ping J, Ye Z, et al. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7[J]. Biosensors and Bioelectronics, 2013, 49: 492-498.
[14]  Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[15]  Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters, 2008, 8(7): 2012-2016.
[16]  Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[17]  Xiang Q J, Yu J G, Jaroniec M, Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41(2): 782-796.
[18]  Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(20): 282-286.
[19]  Gan T, Sun J, Meng W, et al. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food[J]. Food Chemistry, 2013, 141(4): 3731-3737.
[20]  Ren F, Zhu G M, Ren P G. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 263-272 (in Chinese). 任芳, 朱光明, 任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报, 2014, 31(2): 263-272.
[21]  Guo J, Li Y, Zhu S, et al. Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water[J]. RSC Advances, 2012, 2(4): 1356-1363.
[22]  Wang H W, Hu Z A, Chang Y Q, et al. Design and synthesis of NiCO2O4-reduced graphene oxide composites for high performance supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(28): 10504-10511.
[23]  Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. The Journal of Physical Chemistry Letters, 2010, 1(17): 2607-2612.
[24]  Shi Y F, Wan Y, Zhao D Y. Ordered mesoporous non-oxide materials[J]. Chemical Society Reviews, 2011, 40(7): 3854-3878.
[25]  Jiao E, Jumas J C, Wbmes M, et al. Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation[J]. Journal of the American Chemical Society, 2006, 128(39): 12905-12909.
[26]  Roggenbuck J, Sch?fer H, Tsoncheva T, et al. Mesoporous CeO2: Synthesis by nanocasting, characterisation and catalytic properties[J]. Microporous and Mesoporous Materials, 2007, 101(3): 335-341.
[27]  Gan T, Sun J, Huang K, et al. A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol[J]. Sensors and Actuators B: Chemical, 2013, 177: 412-418.
[28]  Zhu Y, Li C, Cao C. Strongly coupled mesoporous SnO2-graphene hybrid with enhanced electrochemical and photocatalytic activity[J]. RSC Advances, 2013, 3(29): 11860-11868.
[29]  Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemcial Reviews, 1995, 95(1): 69-96.
[30]  Pan L, Zou J J, Wang S, et al. Morphology evolution of TiO2 facets and vital influences on photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1650- 1655.
[31]  Lavanya T, Satheesh K, Dutta M, et al. Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers[J]. Journal of Alloys and Compounds, 2014, 615: 643-650.
[32]  Wu P, Li Q, Zhao C X, et al. Synthesis and photoluminescence property of indium oxide nanowires[J]. Applied Surface Science, 2008, 255(5): 3201-3204.
[33]  Wang C, Chen D, Jiao X, et al. Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13398-13403.
[34]  Chen X, Zhang Z, Zhang X, et al. Single-source approach to the synthesis of In2S3 and In2O3 crystallites and their optical properties[J]. Chemical Physics Letters, 2005, 407(4-6): 482-486.
[35]  Ali E B, Maliki H E, Bernede J C, et al. In2O3 deposited by reactive evaporation of indium in oxygen atmosphere-influence of post-annealing treatment on optical and electrical properties[J]. Materials Chemistry and Physics, 2002, 73(1): 78-85.
[36]  Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(6707): 152-155.
[37]  Yang H, Shi Q, Tian B, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks[J]. Journal of the American Chemical Society, 2003, 125(16): 4724-4725.
[38]  Sun H T, Sun X, Hu T, et al. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2263-2272.
[39]  Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[40]  Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278.
[41]  Liu G, Wang X, Wang L, et al. Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states[J]. Journal of Colloid and Interface Science, 2009, 334(2): 171-175.
[42]  Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities[J]. ACS Nano, 2011, 5(2): 590-596.
[43]  Yan X, Li Y, Du F, et al. Synthesis and optimizable electrochemical performance of reduced graphene oxide wrapped mesoporous TiO2 microspheres[J]. Nanoscale, 2014, 6(8): 4108-4116.
[44]  Qiu B, Xing M, Zhang J L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(16): 5852-5855.
[45]  Franke E B, Trimble C L, Hale J S, et al. Infrared switching electrochromic devices based on tungsten oxide[J]. Journal of Applied Physics, 2000, 88(10): 5777-5784.
[46]  Khalack J, Ashrit P V. Tunable pseudogaps in electrochromic WO3 inverted opal photonic crystals[J]. Applied Physics Letters, 2006, 89(21): 211112-211115.
[47]  Wang Y D, Chen Z X, Li Y F, et al. Electrical and gas-sensing properties of WO3 semiconductor material[J]. Solid-State Electronics, 2001, 45(5): 639-644.
[48]  Sadakane M, Sasaki K, Kunioku H, et al. Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation[J]. Journal of Materials Chemistry, 2010, 20(9): 1811-1818.
[49]  Huang H, Yue Z K, Song Y J, et al. Mesoporous tungsten oxides as photocatalysts for O2 evolution under irradiation of visible light[J]. Materials Letters, 2012, 88: 57-60.
[50]  Jo C, Hwang J, Song H, et al. Block-copolymer-assisted one-pot synthesis of ordered mesoporous WO3-x/carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors[J]. Advanced Functional Materials, 2013, 23(30): 3747-3754.
[51]  Huang H, Yue Z K, Li G, et al. Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites: Superior interfacial contacts and enhanced photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(47): 15110-15116.
[52]  Jin R H, Li H X, Deng J F. Selective oxidation of cyclopentene to glutaraldehyde by H2O2 over the WO3/SiO2 catalyst[J]. Journal of Catalysis, 2001, 203(1): 75-81.
[53]  Liu F, Kim J G, Lee C W, et al. A mesoporous WO3-x/graphene composite as a high-performance Li-ion battery anode[J]. Applied Surface Science, 2014, 316: 604-609.
[54]  Qurashi A, El-Maghraby E M, Yamazaki T, et al. A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications[J]. Journal of Alloys and Compounds, 2009, 481(1-2): L35-L39.
[55]  Lai F H, Lin L M, Huang Z G. Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb2O5 films[J]. Applied Surface Science, 2006, 253(4): 1801-1805.
[56]  Okura I, Kusunoki S, Kim-Thuan N, et al. Comparison of activities for hydrogen evolution from water of hydrogenase and colloidal platinum[J]. Journal of the Chemical Society, Chemical Communications, 1981, 56-57.
[57]  Zhou Q, Zhong Y H, Chen X, et al. Preparation and photocatalytic activity of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 255-262 (in Chinese). 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料制备及其光催化性能[J]. 复合材料学报, 2014, 31(2): 255-262.
[58]  Wang W, Yu J, Xiang Q, et al. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air[J]. Applied Catalysis B: Environmental, 2012, 119: 109-116.
[59]  Yang X, Fan K, Zhu Y, et al. Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(33): 17278-17283.
[60]  Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag-graphene-based nanocomposites[J]. Small, 2009, 5(20): 2253-2259.
[61]  Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki_miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23): 8262-8270.
[62]  Wang G X, Wang B, Wang X L, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries[J]. Journal of Materials Chemistry, 2009, 19(44): 8378-8384.
[63]  Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J]. Chemical Communications, 2010, 46(12): 2025-2027.
[64]  Wang Z, Zhang H, Li N, et al. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries[J]. Nano Reserach, 2010, 3(10): 748-756.
[65]  Su J, Cao M, Ren L, et al. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties[J]. The Journal of Physical Chemistry C, 2011, 115(30): 14469-14477.
[66]  Li B, Cao H, Yin G, et al. Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(29): 10645-10648.
[67]  Pan S, Liu X, Wang X. Preparation of Ag2S graphene nanocomposite from a single source precursor and its surface-enhanced raman scattering and photoluminescent activity[J]. Materials Characterization, 2011, 62(11): 1094-1101.
[68]  Ciesla U, Schüth F. Ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 1999, 27(2-3): 131- 149.
[69]  Ren Y, Ma Z, Bruce P G. Ordered mesoporous metal oxides: Synthesis and applications[J]. Chemical Society Reviews, 2012, 41(14): 4909-4927.
[70]  Wang Y, Yang C M, Schmidt W, et al. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica[J]. Advanced Materials, 2005, 17(1): 53-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133